1 |
裴爱国. 新型电力系统背景下的新型储能发展[J]. 中国电力企业管理, 2023(4): 82-83.
|
|
PEI A G. Development of new energy storage under the background of new power system[J]. China Power Enterprise Management, 2023(4): 82-83.
|
2 |
万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31.
|
|
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31.
|
3 |
严凯, 侯付彬, 刘明明, 等. 恒压型抽水压缩空气储能系统的热力学及经济学多目标优化[J]. 工程热物理学报, 2020, 41(1): 135-140.
|
|
YAN K, HOU F B, LIU M M, et al. Multi-objective optimization on thermodynamics and economics of a constant-pressure pumped hydro combined with compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(1): 135-140.
|
4 |
李丞宸, 李宇峰, 张严, 等. 一种新型蒸汽恒压抽水压缩空气储能系统及其热力学分析[J]. 西安交通大学学报, 2021, 55(6): 84-91.
|
|
LI C C, LI Y F, ZHANG Y, et al. Novel steam constant-pressure pumped hydro with compressed air energy storage system and thermodynamic analysis[J]. Journal of Xi'an Jiaotong University, 2021, 55(6): 84-91.
|
5 |
MAZLOUM Y, SAYAH H, NEMER M. Dynamic modeling and simulation of an isobaric adiabatic compressed air energy storage (IA-CAES) system[J]. Journal of Energy Storage, 2017, 11: 178-190.
|
6 |
刘扬波, 陈俊生, 李全皎, 等. 海上风电水下压缩空气储能系统运行及变工况分析[J]. 南方电网技术, 2022, 16(4): 50-59.
|
|
LIU Y B, CHEN J S, LI Q J, et al. Operation and varying load analysis of offshore wind-underwater compressed air energy storage system[J]. Southern Power System Technology, 2022, 16(4): 50-59.
|
7 |
SEYMOUR R J. Ocean energy on-demand using underocean compressed air storage[J]. American Society of Mechanical Engineers, 2007: doi: 10. 1115/OMAE2007-29515.
|
8 |
刘嘉豪, 王星, 张雪辉, 等. 压缩空气储能系统膨胀机调节级配气特性数值研究[J]. 储能科学与技术, 2020, 9(2): 425-434.
|
|
LIU J H, WANG X, ZHANG X H, et al. Numerical study on the air distribution characteristics of the turbine regulating stage in a compressed air energy storage system[J]. Energy Storage Science and Technology, 2020, 9(2): 425-434.
|
9 |
李扬, 张新敬, 宋健斐, 等. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523.
|
|
LI Y, ZHANG X J, SONG J F, et al. Dynamic regulation and control of the discharge process in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523.
|
10 |
何新兵. 先进压缩空气储能系统性能分析与优化研究[D]. 武汉: 华中科技大学, 2021.
|
|
HE X B. Performance analysis and optimization research of advanced compressed air energy storage system[D]. Wuhan: Huazhong University of Science and Technology, 2021.
|
11 |
ZHANG L, LIU L X, ZHANG C, et al. Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor[J]. Journal of Energy Storage, 2021, 43: 103197.
|
12 |
郝新月. 非等压非等面积混合喷射器的理论与实验研究[D]. 杭州: 浙江大学, 2021.
|
|
HAO X Y. Theoretical and experimental study on the non-isobaric and non-constant area mixing model ejector[D]. Hangzhou: Zhejiang University, 2021.
|
13 |
AHRENS F W, NG T T, OTIS D. Application of air ejectors to the performance improvement and cost reduction of compressed air storage power plants[R]. US: 1978.
|
14 |
GUO Z G, DENG G Y, FAN Y C, et al. Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied Thermal Engineering, 2016, 94: 193-197.
|
15 |
文贤馗, 钟晶亮, 卿绍伟, 等. 含射气抽气器配气机构对蓄热式压缩空气储能系统释能功率的影响[J]. 节能技术, 2020, 38(3): 240-246.
|
|
WEN X K, ZHONG J L, QING S W, et al. Effect of valve train with ejector on the power output of thermal-storage compressed air energy storage system[J]. Energy Conservation Technology, 2020, 38(3): 240-246.
|
16 |
文贤馗, 王琰, 钟晶亮, 等. 定压工况下蓄热式压缩空气储能系统中射气抽气器最佳工作参数分析[J]. 节能技术, 2021, 39(6): 533-537, 541.
|
|
WEN X K, WANG Y, ZHONG J L, et al. Study on the optimal working parameters of ejector in TS-CAES system under constant pressure operation[J]. Energy Conservation Technology, 2021, 39(6): 533-537, 541.
|
17 |
华天润. 绝热压缩空气储能系统热力性能及经济性研究[D]. 武汉: 华中科技大学, 2020.
|
|
HUA T R. Research on thermal performance and economy for adiabatic compressed air energy storage system[D]. Wuhan: Huazhong University of Science and Technology, 2020.
|
18 |
CHEN L X, XIE M N, ZHAO P P, et al. A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid[J]. Applied Energy, 2018, 210: 198-210.
|
19 |
HUANG B J, CHANG J M, WANG C P, et al. A 1-D analysis of ejector performance[J]. International Journal of Refrigeration, 1999, 22(5): 354-364.
|
20 |
彭望明, 刘志强, 徐爱祥. 两级喷射式太阳能制冷系统的压缩比研究[J]. 热科学与技术, 2009, 8(3): 255-260.
|
|
PENG W M, LIU Z Q, XU A X. Research on compression ratio of solar energy two-level ejection refrigeration system[J]. Journal of Thermal Science and Technology, 2009, 8(3): 255-260.
|
21 |
陈少杰. 双热源两级喷射式制冷系统的理论与实验研究[D]. 杭州: 浙江大学, 2015.
|
|
CHEN S J. Theoretical and experimental study on a two-stage ejection refrigeration system driven by two heat sources[D]. Hangzhou: Zhejiang University, 2015.
|
22 |
韩益帆, 安恩科, 张瑞, 等. 10 MW全回热压缩空气储能系统分析[J]. 上海节能, 2019(4): 275-280.
|
|
HAN Y F, AN E K, ZHANG R, et al. Analysis of 10 MW fully heat regenerative compressed air energy storage system[J]. Shanghai Energy Conservation, 2019(4): 275-280.
|
23 |
郑麒麟, 闫燕飞, 郭馨, 等. 百兆瓦级非补燃式压缩空气储能系统设计研究[J]. 锅炉制造, 2022(5): 33-34, 43.
|
|
ZHENG Q L, YAN Y F, GUO X, et al. Design and research of 100 MW non supplementary combustion compressed air energy storage system[J]. Boiler Manufacturing, 2022(5): 33-34, 43.
|
24 |
庞硕. 先进绝热压缩空气储能系统部件特性分析及优化设计[D]. 北京: 华北电力大学, 2019.
|
|
PANG S. Analysis of components characteristics and optimistic design for advanced adiabatic compressed air energy storage system[D]. Beijing: North China Electric Power University, 2019.
|
25 |
贾明祥. 先进压缩空气储能系统设计技术研究[D]. 北京: 华北电力大学, 2018.
|
|
JIA M X. Research on design technology of advanced compressed air energy storage system[D]. Beijing: North China Electric Power University, 2018.
|