1 |
耿国桐, 雷帅, 孙颖, 等. 关于科技情报研究智能化的认识与实践[J]. 情报理论与实践, 2022, 45(5): 1-6. DOI: 10.16353/j.cnki.1000-7490.2022.05.001.
|
|
GENG G T, LEI S, SUN Y, et al. Understanding and practice of intellectualization of sci-tech information research[J]. Information Studies (Theory & Application), 2022, 45(5): 1-6. DOI: 10.16353/j.cnki.1000-7490.2022.05.001.
|
2 |
徐敏, 李广建. 第四范式视角下情报研究的展望[J]. 情报理论与实践, 2017, 40(2): 7-11. DOI: 10.16353/j.cnki.1000-7490. 2017. 02.002.
|
|
XU M, LI J. Prospects of information research from the fourth paradigm[J]. Information Studies (Theory & Application), 2017, 40(2): 7-11. DOI: 10.16353/j.cnki.1000-7490.2017.02.002.
|
3 |
孙洋, 董金平, 唐春, 等. 锂电池百篇论文点评(2012.10.1—2012.11.30)[J]. 储能科学与技术, 2013, 2(1): 42-54.
|
|
SUN Y, DONG J P, TANG C, et al. Reviews of selected 100 recent papers for lithium batteries(Oct.1 to Nov.30, 2012)[J]. Energy Storage Science and Technology, 2013, 2(1): 42-54.
|
4 |
MINX J C, CALLAGHAN M, LAMB W F, et al. Learning about climate change solutions in the IPCC and beyond[J]. Environmental Science & Policy, 2017, 77: 252-259. DOI: 10.1016/j.envsci.2017.05.014.
|
5 |
NUNEZ-MIR G C, IANNONE B V Ⅲ, PIJANOWSKI B C, et al. Automated content analysis: Addressing the big literature challenge in ecology and evolution[J]. Methods in Ecology and Evolution, 2016, 7(11): 1262-1272. DOI: 10.1111/2041-210x. 12602.
|
6 |
DE SOLLA PRICE D J. Little science, Big Science[M]. New York: Columbia University Press, 1963.
|
7 |
FORTUNATO S, BERGSTROM C T, BÖRNER K, et al. Science of science[J]. Nature, 2018, 214: 1-2. DOI: 10.1126/science.aao 0185.
|
8 |
孙蔷馥, 申晓宇, 岑官骏, 等. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. DOI: 10.19799/j.cnki.2095-4239.2024.0142.
|
|
SUN Q F, SHEN X Y, CEN G J, et al. Reviews of selected 100 recent papers for lithium batteries(Dec.1, 2023 to Jan.31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. DOI: 10.19799/j.cnki.2095-4239.2024.0142.
|
9 |
温有奎, 温浩, 乔晓东. 让知识产生智慧——基于人工智能的文本挖掘与问答技术研究[J]. 情报学报, 2019, 38(7): 722-730.
|
|
WEN Y K, WEN H, QIAO X D. Research on the methods of information science and artificial intelligence fusion innovation[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(7): 722-730.
|
10 |
李广建, 潘佳立. 人工智能技术赋能情报工作的历程与当前思考[J]. 信息资源管理学报, 2024, 14(2): 4-20. DOI: 10.13365/j.jirm. 2024.02.004.
|
|
LI G J, PAN J L. The evolution and contemporary perspectives on the empowerment of intelligence by artificial intelligence technology[J]. Journal of Information Resources Management, 2024, 14(2): 4-20. DOI: 10.13365/j.jirm.2024.02.004.
|
11 |
刘江峰, 王希羽, 张君冬, 等. 领域文献深层语义特征视角下的期刊新兴研究主题发现[J]. 情报理论与实践, 2024, 47(3): 177-187. DOI:10.16353/j.cnki.1000-7490.2024.03.023.
|
|
LIU J F, WANG X Y, ZHANG J D, et al. Emergent research topic discovery in journals from the perspective of deep semantic features of domain literature[J]. Information Studies (Theory & Application), 2024, 47(3): 177-187. DOI: 10.16353/j.cnki.1000-7490.2024.03.023.
|
12 |
周海晨, 郑德俊, 郦天宇. 学术全文本的学术创新贡献识别探索[J]. 情报学报, 2020, 39(8): 845-851.
|
|
ZHOU H C, ZHENG D J, LI T Y. Research on the identification of academic innovation contributions of full academic texts[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(8): 845-851.
|
13 |
GROOTENDORST M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure[R]. 2022.
|
14 |
WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10(10): 725-763.
|
15 |
BOTTE G G, SUBRAMANIAN V R, WHITE R E. Mathematical modeling of secondary lithium batteries[J]. Electrochimica Acta, 2000, 45(15/16): 2595-2609. DOI: 10.1016/S0013-4686(00)00340-6.
|
16 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. DOI: 10.1016/j.jpowsour.2009.11.048.
|
17 |
CAIRNS E J, ALBERTUS P. Batteries for electric and hybrid-electric vehicles[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 299-320. DOI: 10.1146/annurev-chembioeng-073009-100942.
|
18 |
ZHU M Q, ZHAO X F, YAN R Z, et al. Recent research progress of alloy-containing lithium anodes in lithium-metal batteries[J]. Current Opinion in Solid State and Materials Science, 2023, 27(3): 101079. DOI: 10.1016/j.cossms.2023.101079.
|
19 |
GHAEMINEZHAD N, WANG Z S, OUYANG Q. A review on lithium-ion battery thermal management system techniques: A control-oriented analysis[J]. Applied Thermal Engineering, 2023, 219: 119497. DOI: 10.1016/j.applthermaleng.2022.119497.
|
20 |
HUANG W Z, ZHAO C Z, WU P, et al. Anode-free solid-state lithium batteries: A review[J]. Advanced Energy Materials, 2022, 12(26): 2201044. DOI: 10.1002/aenm.202201044.
|
21 |
ABDALLA A M, ABDULLAH M F, DAWOOD M K, et al. Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries[J]. Journal of Energy Storage, 2023, 67: 107551. DOI: 10.1016/j.est.2023.107551.
|
22 |
CHEN X L, GONG Y D, LI X, et al. Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1): 1-13. DOI: 10.1007/s12613-022-2541-1.
|
23 |
鲁航语, 侯瑞林, 褚世勇, 等. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 68-84. DOI: 10.3866/PKU.WHXB202211057.
|
|
LU H Y, HOU R L, CHU S Y, et al. Progress on modification strategies of layered lithium-rich cathode materials for high energy lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(7): 68-84. DOI: 10.3866/PKU.WHXB202211057.
|
24 |
ZHENG X Y, CAI Z, SUN J, et al. Nickel-rich layered oxide cathodes for lithium-ion batteries: Failure mechanisms and modification strategies[J]. Journal of Energy Storage, 2023, 58: 106405. DOI: 10.1016/j.est.2022.106405.
|
25 |
DU C Y, ZHAO Z Y, LIU H, et al. The status of representative anode materials for lithium-ion batteries[J]. The Chemical Record, 2023, 23(5): DOI: 10.1002/tcr.202300004.
|
26 |
ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170. DOI: 10.1016/j.ensm.2020.12.027.
|
27 |
LIAO L P, WANG S X, DUAN H H, et al. MXene-based materials: Synthesis, structure and their application for advanced lithium-sulfur batteries[J]. Journal of Energy Storage, 2024, 75: 109555. DOI: 10.1016/j.est.2023.109555.
|
28 |
黄国勇, 董曦, 杜建委, 等. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867. DOI: 10.7536/PC200634.
|
|
HUANG G Y, DONG X, DU J W, et al. High-voltage electrolyte for lithium-ion batteries[J]. Progress in Chemistry, 2021, 33(5): 855-867. DOI: 10.7536/PC200634.
|
29 |
TAMAINATO S, MORI D, TAKEDA Y, et al. Composite polymer electrolytes for lithium batteries[J]. ChemistrySelect, 2022, 7(29): e202201667. DOI: 10.1002/slct.202201667.
|
30 |
SHAO Q J, ZHU S D, CHEN J. A review on lithium-sulfur batteries: Challenge, development, and perspective[J]. Nano Research, 2023, 16(6): 8097-8138. DOI: 10.1007/s12274-022-5227-0.
|