1 |
NUNES V M B, QUEIRÓS C S, LOURENÇO M J V, et al. Molten salts as engineering fluids–A review Part I. Molten alkali nitrates[J]. Applied Energy, 2016, 183: 603-611. DOI: 10.1016/j. apenergy.2016.09.003.
|
2 |
马广超, 狄跃忠, 彭建平, 等. 青海盐湖水氯镁石利用技术现状[J]. 矿产保护与利用, 2019, 39(3): 160-166. DOI: 10.13779/j.cnki.issn1001-0076.2019.03.025.
|
|
MA G C, DI Y Z, PENG J P, et al. Utilization technical status of bischofite in Qinghai salt lake[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 160-166. DOI: 10.13779/j.cnki.issn1001-0076.2019.03.025.
|
3 |
吕秀梅, 尤静林, 王媛媛, 等. Na3AlF6-Al2O3系熔盐离子结构的拉曼光谱研究[J]. 光散射学报, 2015, 27(1): 39-43. DOI: 10.13883/j.issn1004-5929.201501009.
|
|
LV X M, YOU J L, WANG Y Y, et al. Raman spectroscopic study on the structure of Na3AlF6-Al2O3 molten salt system[J]. The Journal of Light Scattering, 2015, 27(1): 39-43. DOI: 10.13883/j.issn1004-5929.201501009.
|
4 |
SMITH A L, VERLEG M N, VLIELAND J, et al. In situ high-temperature EXAFS measurements on radioactive and air-sensitive molten salt materials[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 1): 124-136. DOI: 10.1107/S160057751801648X.
|
5 |
SUN J, GUO X J, ZHOU J, et al. Investigation of the local structure of molten ThF4-LiF and ThF4-LiF-BeF2 mixtures by high-temperature X-ray absorption spectroscopy and molecular-dynamics simulation[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 5): 1733-1741. DOI: 10.1107/S1600577519009718.
|
6 |
GHERIBI A E, TORRES J A, CHARTRAND P. Recommended values for the thermal conductivity of molten salts between the melting and boiling points[J]. Solar Energy Materials and Solar Cells, 2014, 126: 11-25. DOI: 10.1016/j.solmat.2014.03.028.
|
7 |
AN X H, CHENG J H, YIN H Q, et al. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique[J]. International Journal of Heat and Mass Transfer, 2015, 90: 872-877. DOI: 10.1016/j.ijheatmasstransfer. 2015. 07.042.
|
8 |
WANG J, WU J, SUN Z, et al. Molecular dynamics study of the transport properties and local structures of molten binary systems (Li, Na)Cl, (Li, K)Cl and (Na, K)Cl[J]. Journal of Molecular Liquids, 2015, 209: 498-507. DOI: 10.1016/j.molliq.2015.06.021.
|
9 |
WANG J, WU J, LU G M, et al. Molecular dynamics study of the transport properties and local structures of molten alkali metal chlorides. Part III. Four binary systems LiCl-RbCl, LiCl-CsCl, NaCl-RbCl and NaCl-CsCl[J]. Journal of Molecular Liquids, 2017, 238: 236-247. DOI: 10.1016/j.molliq.2017.03.103.
|
10 |
WU J, WANG J, NI H O, et al. The influence of NaCl concentration on the (LiCl-KCl) eutectic system and temperature dependence of the ternary system[J]. Journal of Molecular Liquids, 2018, 253: 96-112. DOI: 10.1016/j.molliq.2017.11.068.
|
11 |
PAN G C, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 103: 417-427. DOI: 10.1016/j.ijheatmasstransfer.2016.07.042.
|
12 |
DING J, PAN G, DU L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389. DOI: 10.1016/j.nanoen.2017.07.020.
|
13 |
ISHII Y, KASAI S, SALANNE M, et al. Transport coefficients and the Stokes-Einstein relation in molten alkali halides with polarisable ion model[J]. Molecular Physics, 2015, 113(17/18): 2442-2450. DOI: 10.1080/00268976.2015.1046527.
|
14 |
CORRADINI D, MADDEN P A, SALANNE M. Coordination numbers and physical properties in molten salts and their mixtures[J]. Faraday Discussions, 2016, 190: 471-486. DOI: 10.1039/c5fd00223k.
|
15 |
WEN T Q, WANG C Z, KRAMER M J, et al. Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds[J]. Physical Review B, 2019, 100(17): 174101. DOI: 10.1103/physrevb.100.174101.
|
16 |
PAN G, CHEN P, YAN H, et al. A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 1. Potential development and properties prediction of molten ZnCl2[J]. Computational Materials Science, 2020, 185: 109955. DOI: 10.1016/j.commatsci.2020.109955.
|
17 |
PAN G, DING J, DU Y F, et al. A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP[J]. Computational Materials Science, 2021, 187: 110055. DOI: 10.1016/j.commatsci.2020.110055.
|
18 |
GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473. DOI: 10.1002/jcc.20078.
|
19 |
MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. DOI: 10.1002/jcc.21224.
|
20 |
LI X J, LI N, LIU W H, et al. Unrevealing the thermophysical properties and microstructural evolution of MgCl2-NaCl-KCl eutectic: FPMD simulations and experimental measurements[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110504. DOI: 10.1016/j.solmat.2020.110504.
|
21 |
WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184. DOI: 10.1016/j.cpc.2018.03.016.
|
22 |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI: 10.1006/jcph.1995.1039.
|
23 |
SHARMA B K, WILSON M. Intermediate-range order in molten network-forming systems[J]. Physical Review B, 2006, 73(6): 060201. DOI: 10.1103/physrevb.73.060201.
|
24 |
MAINTZ S, DERINGER V L, TCHOUGRÉEFF A L, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT[J]. Journal of Computational Chemistry, 2016, 37(11): 1030-1035. DOI: 10.1002/jcc.24300.
|
25 |
LI Y Y, XU X K, WANG X X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP[J]. Solar Energy, 2017, 152: 57-79. DOI: 10.1016/j.solener.2017.03.019.
|
26 |
LIANG W S, LU G M, YU J G. Molecular dynamics simulations of molten magnesium chloride using machine-learning-based deep potential[J]. Advanced Theory and Simulations, 2020, 3(12): DOI: 10.1002/adts.202000180.
|
27 |
PAN G, DING J, CHEN P, et al. Finite-size effects on thermal property predictions of molten salts[J]. Solar Energy Materials and Solar Cells, 2021, 221: 110884. DOI: 10.1016/j.solmat. 2020. 110884.
|
28 |
VILLADA C, DING W J, BONK A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111344. DOI: 10.1016/j.solmat.2021.111344.
|
29 |
PAN G, WEI X L, YU C, et al. Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications[J]. Applied Energy, 2020, 262: 114418. DOI: 10.1016/j.apenergy.2019.114418.
|