储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4368-4380.doi: 10.19799/j.cnki.2095-4239.2024.0731

• 热化学储能专刊 • 上一篇    下一篇

高性能氯化物熔盐的结构与热物性分子动力学研究

于超1,2(), 潘格川崎1()   

  1. 1.东莞理工学院化学工程与能源技术学院,广东 东莞 523808
    2.东莞新能源研究院,广东 东莞 523830
  • 收稿日期:2024-08-01 修回日期:2024-10-23 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 潘格川崎 E-mail:1240096418@qq.com;pangechuanqi@mail.163.com
  • 作者简介:于超(1993—),女,硕士,研究方向为储能材料与技术,E-mail:1240096418@qq.com
  • 基金资助:
    国家自然科学基金青年科学基金(52106233)

Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt

Chao YU1,2(), Gechuanqi PAN1()   

  1. 1.College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangdong, China
    2.Institute of New Energy, Dongguan 523830, Guangdong, China
  • Received:2024-08-01 Revised:2024-10-23 Online:2024-12-28 Published:2024-12-23
  • Contact: Gechuanqi PAN E-mail:1240096418@qq.com;pangechuanqi@mail.163.com

摘要:

近年来可再生能源的大力发展以及火电深度调峰调频的推进对熔盐储热材料工作温度范围和热物性提出了更高的要求,MgCl2-NaCl-KCl(MgNaK)熔盐是优秀的候选熔盐之一。然而,MgNaK熔盐的热物性数据不完善。本工作基于第一性原理分子动力学模拟(FPMD)得到的能量和原子受力信息,开发了一种能够精确地描述MgNaK熔盐(45.4%-33%-21.6%,摩尔分数)微观粒子间相互作用的机器学习势函数并对其可靠性进行了验证。该机器学习势函数模拟计算的偏径向分布函数(PRDF)和配位数(CN)与FPMD基本重合。本工作从原子和电子的角度对局域结构和热性能随温度的变化进行了详细的研究。Na+或K+离子的引入破坏了原本紧密连接的MgCl x 网状结构,从而影响输运性质。采用机器学习势函数模拟计算的密度(ρ)和恒压比热容(Cp )与实验数据高度一致,偏差均小于2%。通过动能理论讨论了MgNaK熔盐导热系数(λ)随温度负线性相关的原因,得到与其他氯化物熔盐类似的结论。最后,基于分子模拟和实验测量,对MgNaK熔盐在整个工作温度范围内的λ和黏度(η)给出了推荐值。

关键词: 高性能氯化物熔盐, 储能技术, 微结构与热物性, 机器学习势函数

Abstract:

The rapid development of renewable energy technologies and improvements in deep load adjustment and frequency regulation in thermal power systems have placed higher demands on the operating temperature range and thermophysical properties of molten salt storage materials. MgCl2-NaCl-KCl (MgNaK) molten salt stands out among the potential candidates. However, complete thermophysical property data for MgNaK molten salt is lacking. In this study, we developed a machine learning potential function to accurately describe the microscopic particle interactions in MgNaK molten salt (with a composition of 45.4% mol MgCl2, 33% mol NaCl, and 21.6% mol KCl). This model is based on energy and atomic force information obtained from first-principles molecular dynamics (FPMD) simulations. The reliability of this machine learning potential function was validated by comparing the partial radial distribution function (PRDF) and coordination number (CN) with FPMD results, showing excellent agreement. We explored how the local structure and thermal properties of MgNaK vary with temperature from atomic and electronic perspectives. The introduction of Na+ or K+ ions disrupts the tightly connected MgCl x network structure, thereby affecting transportation properties. The density (ρ) and constant-pressure specific heat capacity (Cp ) obtained from machine learning potential function simulations were found to closely match the experimental data, with deviations of less than 2%. Furthermore, we examined the thermal conductivity (λ) of MgNaK molten salt using kinetic theory, we examined a negative linear correlation with temperature, which aligns with observations in other chloride molten salts. Based on molecular simulations and experimental measurements, we provide recommended values for λ and viscosity (η) of MgNaK molten salt across the entire operating temperature range.

Key words: high performance chloride molten salt, energy storage technology, microstructures and thermophysical properties, machine learning potential

中图分类号: