1 |
ZHU C Y, YU W Q, ZHANG S X, et al. Hexaindium heptasulfide/nitrogen and sulfur Co-doped carbon hollow microspindles with ultrahigh-rate sodium storage through stable conversion and alloying reactions[J]. Advanced Materials, 2023, 35(16): 2211611. DOI: 10.1002/adma.202211611.
|
2 |
YANG Y J, TANG D M, ZHANG C, et al. "Protrusions" or "holes" in graphene: Which is the better choice for sodium ion storage?[J]. Energy & Environmental Science, 2017, 10(4): 979-986. DOI: 10.1039/C7EE00329C.
|
3 |
周海云, 周海涛, 凌峰, 等. 基于预钠化硬碳干法负极的准固态钠离子电池[J]. 中国科技论文, 2023, 18(12): 1299-1307.
|
|
ZHOU H Y, ZHOU H T, LING F, et al. Quasi-solid state sodium ion batteries with pre-sodiated solvent-free hard carbon anodes[J]. China Sciencepaper, 2023, 18(12): 1299-1307.
|
4 |
徐铭礼, 刘猛闯, 杨泽洲, 等. 高比能钠离子电池预钠化技术研究进展[J]. 物理化学学报, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043.
|
|
XU M L, LIU M C, YANG Z Z, et al. Research progress on presodiation strategies for high energy sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043.
|
5 |
MU J J, LIU Z M, LAI Q S, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors[J]. Energy Materials, 2022, 2(6): 200043. DOI: 10.20517/energymater.2022.57.
|
6 |
LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23207-23212. DOI: 10.1021/acsami.9b05005.
|
7 |
陈杰, 陈伟伦, 张旭, 等. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496. DOI: 10.19799/j.cnki.2095-4239.2022.0332.
|
|
CHEN J, CHEN W L, ZHANG X, et al. Research progress of pre-sodiation technologies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496. DOI: 10. 19799/j.cnki.2095-4239.2022.0332.
|
8 |
PI Y Q, GAN Z W, YAN M Y, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery[J]. Chemical Engineering Journal, 2021, 413: 127565. DOI: 10.1016/j.cej.2020.127565.
|
9 |
WANG Y K, LU J, DAI W Q, et al. On the practicability of the solid-state electrochemical pre-sodiation technique on hard carbon anodes for sodium-ion batteries[J]. Advanced Functional Materials, 2024, 34(40): 2403841. DOI: 10.1002/adfm. 202403841.
|
10 |
KOHL M, BORRMANN F, ALTHUES H, et al. Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium-sulfur full cell batteries[J]. Advanced Energy Materials, 2016, 6(6): 1502185. DOI: 10.1002/aenm.201502185.
|
11 |
JEŻOWSKI P, CHOJNACKA A, PAN X, et al. Sodium amide as a "zero dead mass" sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors[J]. Electrochimica Acta, 2021, 375: 137980. DOI: 10.1016/j.electacta.2021.137980.
|
12 |
QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. DOI: 10.1002/aenm.201700403.
|
13 |
YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591. DOI: 10.1021/acsami.5b00594.
|
14 |
ZHANG J, SHI Z Q, WANG C Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors[J]. Electrochimica Acta, 2014, 125: 22-28. DOI: 10.1016/j.electacta.2014.01.040.
|
15 |
HOU L Y, LIU T, WANG H L, et al. Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation[J]. Small, 2023, 19(21): 2207638. DOI: 10.1002/smll.202207638.
|