储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1818-1828.doi: 10.19799/j.cnki.2095-4239.2024.1097

• 储能材料与器件 • 上一篇    下一篇

带嵌入式微通道陶瓷裂解反应器的管式氨燃料电池

许晓茹1(), 欧建臻3, 刘佳伟1, 陈智聪1, 叶豪1, 刘颖隆1, 刘英丽1, 林泽宇1, 刘晶晶1, 简俊辉1, 罗栩1, 范竞敏1, 王超1, 雷励斌1, 梁波1,2()   

  1. 1.广东工业大学材料与能源学院,广东 广州 510006
    2.佛山索弗克氢能有限公司,广东 佛山 528000
    3.皇家墨尔本理工大学工程学院,澳大利亚 墨尔本 VIC3000
  • 收稿日期:2024-11-25 修回日期:2024-12-12 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 梁波 E-mail:1018989193@qq.com;liangbo@gdut.edu.cn
  • 作者简介:许晓茹(2000—),女,硕士研究生,研究方向为固体氧化物燃料电池,E-mail:1018989193@qq.com
  • 基金资助:
    国家重点研发计划(2022YFB4002603)

Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor

Xiaoru XU1(), Jianzhen OU3, Jiawei LIU1, Zhicong CHEN1, Hao YE1, Yinglong LIU1, Yingli LIU1, Zeyu LIN1, Jingjing LIU1, Junhui JIAN1, Xu LUO1, Jingmin FAN1, Chao WANG1, Libin LEI1, Bo LIANG1,2()   

  1. 1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    2.Foshan ISOFC Dynamic Co. , Ltd. , Foshan 528000, Guangdong, China
    3.School of Engineering, RMIT University, Melbourne VIC 3000, Australia
  • Received:2024-11-25 Revised:2024-12-12 Online:2025-05-28 Published:2025-05-21
  • Contact: Bo LIANG E-mail:1018989193@qq.com;liangbo@gdut.edu.cn

摘要:

采用冷等静压法、无心磨法和浸渍法成功制备了一种结构为NiO-YSZ|YSZ|LSCF-GDC的电解质支撑微管式固体氧化物燃料电池,其电解质厚度约为200 μm。氨分解催化剂使用浸渍法制备,以蜂窝陶瓷为载体,制备一种在微通道内表面锚定了纳米级Ru催化剂的氨分解反应器,该反应器对氨的分解率随温度升高而增加,在500 ℃时达到98.9%,在600 ℃时达到99.6%。然后将微通道陶瓷裂解反应器插入并固定在微管式固体氧化物燃料电池(μT-SOFC)中氨燃料输入的上游。借助场发射扫描电子显微镜(SEM)和能谱分析技术(EDS)对μT-SOFC和嵌入式裂解反应器进行微观结构表征和元素分布表征,观察到管式电池经典的三明治结构。μT-SOFC的开路电压为1.19 V,集成了嵌入式裂解反应器的单电池以氨作为燃料,在600 ℃、700 ℃、750 ℃、800 ℃和850 ℃的不同温度下,最大功率密度分别达到8 mW/cm2、19 mW/cm2、41 mW/cm2、53 mW/cm2和57 mW/cm2,最高功率密度达到以75%氢气+25%氮气为燃料时的62%、61%、98%、98%和92%。在这项研究中,采用了阳极内部环形集流取电模式。每个环均匀地收集电流,根据仿真结果,总电流与环数大致成正比。目前关于微管式固体氧化物燃料电池电解质支撑系统的研究甚少,本研究为该领域制备技术、工艺和材料的后续系统性开发提供了新参考。

关键词: 电解质支撑, 微管式固体氧化物燃料电池, 氨燃料电池, 嵌入式裂解反应器

Abstract:

A type of electrolyte-supported tubular solid oxide fuel cell (SOFC) with a NiO-YSZ|YSZ|LSCF-GDC structure has been successfully developed using cold isostatic pressing and dip-coating methods. The fabricated SOFC features an electrolyte thickness of approximately 200 μm. An ammonia decomposition catalyst was also prepared using an impregnation method, with nanoscale Ru catalyst anchored on the inner surface of microchannels in a honeycomb ceramic to create an ammonia decomposition reactor. The decomposition rate of ammonia increased with temperature, reaching 98.9% at 500 ℃ and 99.6% at 600 ℃ .The microchannel ceramic cracking reactor was then inserted and fixed upstream of the ammonia fuel input in the microtubular SOFC (μT-SOFC). Field emission scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were employed to conduct microstructural characterization and elemental distribution analysis of both the μT-SOFC and the embedded cracking reactor. The μT-SOFC exhibited an open-circuit voltage of 1.19 V and, when fueled with ammonia, achieved maximum power densities of 8 mW/cm2, 19 mW/cm2, 41 mW/cm2, 53 mW/cm2, and 57 mW/cm2 at temperatures of 600 ℃, 700 ℃, 750 ℃, 800 ℃, and 850 ℃, respectively. These power densities reached 62%, 61%, 98%, 98%, and 92% of the performance observed when using 75%H2+25%N2 was as fuel.This study employed an anode internal circular current collection mode, where each ring uniformly collected current. Simulation results indicated that the total current is roughly proportional to the number of rings. Currently, there is limited research on μT-SOFC electrolyte support systems, and this study provides guidance on the model of μT-SOFC with an electrolyte support system.

Key words: electrolyte-supported, microtubular solid oxide fuel cell, ammonia fuel cell, embedded cracking reactor

中图分类号: