1 |
AGYEKUM E B, ODOI-YORKE F, ABBEY A A, et al. A review of the trends, evolution, and future research prospects of hydrogen fuel cells—A focus on vehicles[J]. International Journal of Hydrogen Energy, 2024, 72: 918-939. DOI: 10.1016/j.ijhydene. 2024.05.480.
|
2 |
YANG Z B, GUO M Y, WANG N, et al. A short review of cathode poisoning and corrosion in solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(39): 24948-24959. DOI: 10.1016/j.ijhydene.2017.08.057.
|
3 |
REVANKAR S, MAJUMDAR P. Fuel cells: Principles, design, and analysis[M]. Hoboken: CRC Press, 2014.
|
4 |
HSIEH W S, LIN P, WANG S F. Effects of cathode materials on the characteristics of electrolyte supported micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2014, 253: 35-40. DOI: 10.1016/j.jpowsour.2013.11.113.
|
5 |
SINGHAL S C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics, 2000, 135(1/2/3/4): 305-313. DOI: 10.1016/S0167-2738(00)00452-5.
|
6 |
VAN HERLE J, IHRINGER R, SAMMES N M, et al. Concept and technology of SOFC for electric vehicles[J]. Solid State Ionics, 2000, 132(3/4): 333-342. DOI: 10.1016/S0167-2738(00)00649-4.
|
7 |
HOWE K S, THOMPSON G J, KENDALL K. Micro-tubular solid oxide fuel cells and stacks[J]. Journal of Power Sources, 2011, 196(4): 1677-1686. DOI: 10.1016/j.jpowsour.2010.09.043.
|
8 |
SUZUKI T, FUNAHASHI Y, YAMAGUCHI T, et al. Design and fabrication of lightweight, submillimeter tubular solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2007, 10(8): A177. DOI: 10.1149/1.2739211.
|
9 |
YAMAGUCHI T, SUZUKI T, SHIMIZU S, et al. Examination of wet coating and co-sintering technologies for micro-SOFCs fabrication[J]. Journal of Membrane Science, 2007, 300(1/2): 45-50. DOI: 10.1016/j.memsci.2007.05.002.
|
10 |
KANAWKA K, GRANDE F D, WU Z T, et al. Microstructure and performance investigation of a solid oxide fuel cells based on highly asymmetric YSZ microtubular electrolytes[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6062-6068. DOI: 10.1021/ie1002558.
|
11 |
MORALES M, NAVARRO M E, CAPDEVILA X G, et al. Processing of graded anode-supported micro-tubular SOFCs based on Samaria-doped ceria via gel-casting and spray-coating[J]. Ceramics International, 2012, 38(5): 3713-3722. DOI: 10.1016/j.ceramint.2012.01.015.
|
12 |
ZHANG X Z, LIN B, LING Y H, et al. An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8654-8662. DOI: 10.1016/j.ijhydene.2010.05.122.
|
13 |
IRSHAD M, SIRAJ K, RAZA R, et al. A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance[J]. Applied Sciences, 2016, 6(3): 75. DOI: 10.3390/app6030075.
|
14 |
BAE J. A novel metal supported SOFC fabrication method developed in KAIST: A sinter-joining method[J]. Journal of the Korean Ceramic Society, 2016, 53(5): 478-482. DOI: 10.4191/kcers.2016.53.5.478.
|
15 |
FAES A, HESSLER-WYSER A, ZRYD A, et al. A review of RedOx cycling of solid oxide fuel cells anode[J]. Membranes, 2012, 2(3): 585-664. DOI: 10.3390/membranes2030585.
|
16 |
FAES A, NAKAJO A, HESSLER-WYSER A, et al. RedOx study of anode-supported solid oxide fuel cell[J]. Journal of Power Sources, 2009, 193(1): 55-64. DOI: 10.1016/j.jpowsour. 2008.12.118.
|
17 |
YOUNG J L, BIRSS V I. Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(17): 7126-7135. DOI: 10.1016/j.jpowsour.2010.09.002.
|
18 |
FAES A, LUND FRANDSEN H, PIHLATIE M, et al. Curvature and strength of Ni-YSZ solid oxide half-cells after redox treatments[J]. Journal of Fuel Cell Science and Technology, 2010, 7(5): 051011. DOI: 10.1115/1.4001019.
|
19 |
MONZÓN H, LAGUNA-BERCERO M A. Redox-cycling studies of anode-supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(8): 7262-7270. DOI: 10.1016/j.ijhydene.2011.10.026.
|
20 |
HEO Y H, LEE J W, LEE S B, et al. Redox-induced performance degradation of anode-supported tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(1): 797-804. DOI: 10.1016/j.ijhydene.2010.10.038.
|
21 |
LAWLOR V, GRIESSER S, BUCHINGER G, et al. Review of the micro-tubular solid oxide fuel cell Part I. Stack design issues and research activities[J]. Journal of Power Sources, 2009, 193(2): 387-399. DOI: 10.1016/j.jpowsour.2009.02.085.
|
22 |
YAMAMOTO O. Solid oxide fuel cells: Fundamental aspects and prospects[J]. Electrochimica Acta, 2000, 45(15/16): 2423-2435. DOI: 10.1016/S0013-4686(00)00330-3.
|
23 |
FLEISCHHAUER F, BERMEJO R, DANZER R, et al. Strength of an electrolyte supported solid oxide fuel cell[J]. Journal of Power Sources, 2015, 297: 158-167. DOI: 10.1016/j.jpowsour. 2015.07.075.
|
24 |
VAFAEENEZHAD S, HANIFI A R, LAGUNA-BERCERO M A, et al. Microstructure and long-term stability of Ni-YSZ anode supported fuel cells: A review[J]. Materials Futures, 2022, 1(4): 042101. DOI: 10.1088/2752-5724/ac88e7.
|
25 |
DROUSHIOTIS N, GRANDE F D, DZARFAN OTHMAN M H, et al. Comparison between anode-supported and electrolyte-supported Ni-CGO-LSCF micro-tubular solid oxide fuel cells[J]. Fuel Cells, 2014, 14(2): 200-211. DOI: 10.1002/fuce.201300024.
|
26 |
MATHUR L, NAMGUNG Y, KIM H, et al. Recent progress in electrolyte-supported solid oxide fuel cells: A review[J]. Journal of the Korean Ceramic Society, 2023, 60(4): 614-636. DOI: 10.1007/s43207-023-00296-3.
|
27 |
AN C H, KANG W, DENG Q B, et al. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range[J]. Rare Metals, 2022, 41(2): 378-384. DOI: 10.1007/s12598-021-01791-4.
|
28 |
LIU S S, WANG M F, HE Y Z, et al. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities[J]. Coordination Chemistry Reviews, 2023, 475: 214882. DOI: 10.1016/j.ccr.2022.214882.
|
29 |
SIMBECK D, CHANG E. Hydrogen supply: Cost estimate for hydrogen pathways-Scoping Analysis, January 22, 2002-July 22, 2002 [R]. United States, 2002.
|
30 |
HIBINO T, HASHIMOTO A, INOUE T, et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science, 2000, 288(5473): 2031-2033. DOI: 10.1126/science. 288.5473.2031.
|
31 |
SCHLAPBACH L, ZÜTTEL A. Hydrogen-storage materials for mobile applications. Materials for sustainable energy[M]. Co-Published with Macmillan Publishers Ltd, UK, 2010: 265-270. DOI: 10.1142/9789814317665_0038.
|
32 |
SCHLAPBACH L, ZÜTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. DOI: 10.1038/35104634.
|
33 |
GAY S, ESHANI M. Fuel cells: Technology alternative fuels and fuel processing [J]. SAE International, Warrendale, 2003: 1.
|
34 |
ROTHSTEIN J. Hydrogen and fossil fuels[J]. International Journal of Hydrogen Energy, 1995, 20(4): 283-286. DOI: 10.1016/0360-3199(93)E0008-9.
|
35 |
TAN W C, IWAI H, KISHIMOTO M, et al. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia[J]. Journal of Power Sources, 2018, 384: 367-378. DOI: 10.1016/j.jpowsour.2018.03.011.
|
36 |
KISHIMOTO M, MUROYAMA H, SUZUKI S, et al. Development of 1 kW-class ammonia-fueled solid oxide fuel cell stack[J]. Fuel Cells, 2020, 20(1): 80-88. DOI: 10.1002/fuce.201900131.
|
37 |
HACKER V, KORDESCH K. Ammonia crackers [M]. Handbook of Fuel Cells. 2010.
|
38 |
GRASHAM O, DUPONT V, CAMARGO-VALERO M A, et al. Combined ammonia recovery and solid oxide fuel cell use at wastewater treatment plants for energy and greenhouse gas emission improvements[J]. Applied Energy, 2019, 240: 698-708. DOI: 10.1016/j.apenergy.2019.02.029.
|
39 |
WOJCIK A, MIDDLETON H, DAMOPOULOS I, et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources, 2003, 118(1/2): 342-348. DOI: 10.1016/S0378-7753(03)00083-1.
|
40 |
MA Q L, MA J J, ZHOU S, et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte[J]. Journal of Power Sources, 2007, 164(1): 86-89. DOI: 10.1016/j.jpowsour. 2006.09.093.
|
41 |
PERNA A, MINUTILLO M, JANNELLI E, et al. Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC[J]. Applied Energy, 2018, 231: 1216-1229. DOI: 10.1016/j.apenergy. 2018.09.138.
|
42 |
STOECKL B, PREININGER M, SUBOTIĆ V, et al. Towards a wastewater energy recovery system: The utilization of humidified ammonia by a solid oxide fuel cell stack[J]. Journal of Power Sources, 2020, 450: 227608. DOI: 10.1016/j.jpowsour. 2019.227608.
|
43 |
ZHANG L M, CONG Y, YANG W S, et al. A direct ammonia tubular solid oxide fuel cell[J]. Chinese Journal of Catalysis, 2007, 28(9): 749-751. DOI: 10.1016/S1872-2067(07)60062-X.
|
44 |
LI Y, PILLAI H S, WANG T, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells[J]. Energy & Environmental Science, 2021, 14(3): 1449-1460. DOI: 10.1039/D0EE03351K.
|
45 |
YI Y N, CHEN J M, XU M G, et al. Exsolved nanoparticles decorated double perovskites as high-performance anodes for direct-ammonia solid oxide fuel cells[J]. Catalysts, 2023, 13(6): 996. DOI: 10.3390/catal13060996.
|
46 |
FAN J H, SHI J X, ZHANG R Y, et al. Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell[J]. Journal of Power Sources, 2023, 556: 232449. DOI: 10.1016/j.jpowsour. 2022.232449.
|
47 |
LIU X, SUN S D, DAI Y, et al. Numerical study of temperature distribution in tubular segmented-in-series SOFC with co-flow and counter-flow arrangements[J]. International Journal of Hydrogen Energy, 2024, 74: 447-458. DOI: 10.1016/j.ijhydene. 2024.06.145.
|
48 |
CHEN Z C, YAO Y, XU X R, et al. Numerical study of a bamboo-like micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2024, 87: 1189-1197. DOI: 10.1016/j.ijhydene. 2024.09.037.
|
49 |
LE BARS M, WORSTER M G. Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification [J]. Journal of Fluid Mechanics, 2006, 550: 149-173. DOI: 10.1017/S0022112005007998.
|
50 |
ZHANG X, ESPINOZA M, LI T, et al. Parametric study for electrode microstructure influence on SOFC performance [J]. International Journal of Hydrogen Energy, 2021, 46(75): 37440-37459. DOI: 10.1016/j.ijhydene.2021.09.057.
|
51 |
ANDERSSON M, YUAN J, SUNDéN B. SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants [J]. Journal of Power Sources, 2013, 232: 42-54. DOI: 10.1016/j.jpowsour.2012.12.122.
|
52 |
ZHENG K Q, LI L, NI M. Investigation of the electrochemical active thickness of solid oxide fuel cell anode[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12904-12912. DOI: 10.1016/j.ijhydene.2014.06.108.
|
53 |
LIANG B, ZHANG S L, ZHANG Z F, et al. Dimensional analysis of Ni-NiO grains at anode/electrolyte interface for SOFC during redox reaction[J]. International Journal of Applied Ceramic Technology, 2017, 14(4): 543-549. DOI: 10.1111/ijac.12667.
|
54 |
CHEN X, LIN J, SUN L, et al. Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer[J]. Electrochimica Acta, 2019, 298: 112-120. DOI: 10.1016/j.electacta.2018.12.078.
|
55 |
MUKHERJEE S, DEVAGUPTAPU S V, SVIRIPA A, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. DOI: 10.1016/j.apcatb.2017.12.039.
|