1 |
DEGEN F, WINTER M, BENDIG D, et al. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nature Energy, 2023, 8(11): 1284-1295. DOI: 10. 1038/s41560-023-01355-z.
|
2 |
石敏, 蒋鹏杰, 徐琛, 等. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. DOI: 10.19799/j.cnki. 2095-4239.2023.0892.
|
|
SHI M, JIANG P J, XU C, et al. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth[J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. DOI: 10.19799/j.cnki.2095-4239.2023.0892.
|
3 |
XU H Y, HAN C, LI W T, et al. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries[J]. Journal of Power Sources, 2022, 529: 231219. DOI: 10.1016/j.jpowsour.2022.231219.
|
4 |
WEI Z W, WANG X, ZHOU M J, et al. Revitalizing lithium metal batteries: Strategies for tackling dead lithium formation and reactivation[J]. Small, 2024, 20(51): e2407395. DOI: 10.1002/smll.202407395.
|
5 |
LEE H G, KIM S Y, LEE J S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles[J]. NPJ Computational Materials, 2022, 8: 103. DOI: 10.1038/s41524-022-00788-6.
|
6 |
LIU H, CHENG X B, XU R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254. DOI: 10.1002/aenm.201902254.
|
7 |
GAO L T, HUANG P Y, FENG J M, et al. In situ characterization and phase-filed modeling of the interaction between dendrites and gas bubbles during an electrochemical process[J]. ChemElectroChem, 2021, 8(15): 2881-2887. DOI: 10.1002/celc. 202100481.
|
8 |
XIANG S B, FU Y, YIN C R, et al. Advances in research on the inhibitory effect of 3D current collector structures for lithium dendrites[J]. Inorganic Chemistry Frontiers, 2023, 10(23): 6767-6791. DOI: 10.1039/D3QI01290E.
|
9 |
JIANG F N, YANG S J, LIU H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode[J]. SusMat, 2021, 1(4): 506-536. DOI: 10.1002/sus2.37.
|
10 |
TEWARI D, MUKHERJEE P P. Mechanistic understanding of electrochemical plating and stripping of metal electrodes[J]. Journal of Materials Chemistry A, 2019, 7(9): 4668-4688. DOI: 10.1039/C8TA11326B.
|
11 |
ZHU R D, LIU C, FENG J M, et al. In situ observation of lithium dendrite of different graphite electrodes[J]. ECS Transactions, 2018, 85(13): 347-356. DOI: 10.1149/08513.0347ecst.
|
12 |
丰闪闪, 刘晓斌, 郭石麟, 等. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109. DOI:10.11949/0438-1157.20211241
|
13 |
苑志祥, 张雅岚, 张浩, 等. 高杨氏模量细菌纤维素隔膜有效抑制锂枝晶[J]. 化学学报, 2024, 82(8): 849-855. DOI: 10.6023/A24040141
|
14 |
ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. DOI: 10.1038/s41565-019-0604-x.
|
15 |
FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. DOI: 10.1038/s41560-021-00917-3.
|
16 |
KONG L X, XING Y J, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access, 2018, 6: 8387-8393.
|
17 |
DACHRAOUI W, KÜHNEL R S, BATTAGLIA C, et al. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy[J]. Nano Energy, 2024, 130: 110086. DOI: 10.1016/j.nanoen.2024.110086.
|
18 |
DING X, CHEN Y W, GUO Y Z, et al. In-situ observation of lithium plating and stripping by synchrotron-based soft X-ray microscopy[J]. Journal of Power Sources, 2024, 609: 234571. DOI: 10.1016/j.jpowsour.2024.234571.
|
19 |
SHEN X, ZHANG R, WANG S H, et al. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 137-143. DOI: 10. 1016/j.cjche.2021.05.008.
|
20 |
LIU H W, JIANG W N, CHEN W J, et al. Dendrite growth and inhibition in all-solid-state lithium metal batteries: in situ optical observation[J]. Journal of Materials Chemistry A, 2024, 12(6): 3575-3579. DOI: 10.1039/D3TA07366A.
|
21 |
ARGUELLO M E, LABANDA N A, CALO V M, et al. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library[J]. Journal of Energy Storage, 2022, 53: 104892. DOI: 10.1016/j.est. 2022. 104892.
|
22 |
JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511. DOI: 10.1149/1945-7111/ac5fed.
|
23 |
LI Y J, SHA L T, ZHANG G, et al. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107993. DOI: 10.1016/j.cclet.2022.107993.
|
24 |
KO C J, TAI C N, CHEN C H, et al. Influence of concentration-dependent diffusivity on lithium plating: Polarization, stability, and dendrite formation in phase-field simulations[J]. Journal of Energy Storage, 2024, 97: 112615. DOI: 10.1016/j.est. 2024. 112615.
|
25 |
ZHANG J W, LIU Y P, WANG C G, et al. An electrochemical-mechanical phase field model for lithium dendrite[J]. Journal of the Electrochemical Society, 2021, 168(9): 090522. DOI: 10.1149/1945-7111/ac22c7.
|
26 |
ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: A phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. DOI: 10.1016/j.jechem.2021.12.020.
|
27 |
PANT B R, REN Y, CAO Y. Dendrite growth and dead lithium formation in lithium metal batteries and mitigation using a protective layer: A phase-field study[J]. ACS Applied Materials & Interfaces, 2024, 16(42): 56947-56956. DOI: 10.1021/acsami. 4c08605.
|
28 |
GAO L T, LYU Y H, GUO Z S. External pressure affecting dendrite growth and dissolution in lithium metal batteries during cycles[J]. ACS Applied Materials & Interfaces, 2023, 15(50): 58416-58428. DOI: 10.1021/acsami.3c13972.
|
29 |
YANG H D, WANG Z J. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J]. Journal of Solid State Electrochemistry, 2023, 27(10): 2607-2618. DOI: 10.1007/s10008-023-05560-4.
|
30 |
QIAO D G, LIU X L, DOU R F, et al. Quantitative analysis of the inhibition effect of rising temperature and pulse charging on Lithium dendrite growth[J]. Journal of Energy Storage, 2022, 49: 104137. DOI: 10.1016/j.est.2022.104137.
|
31 |
QI G Q, LIU X L, DOU R F, et al. A three-dimensional multiphysics field coupled phase field model for lithium dendrite growth[J]. Journal of Energy Storage, 2024, 101: 113899. DOI: 10.1016/j.est.2024.113899.
|
32 |
CHEN C H, PAO C W. Phase-field study of dendritic morphology in lithium metal batteries[J]. Journal of Power Sources, 2021, 484: 229203. DOI: 10.1016/j.jpowsour.2020.229203.
|
33 |
MU Z L, GUO Z P, LIN Y H. Simulation of 3-D lithium dendritic evolution under multiple electrochemical states: A parallel phase field approach[J]. Energy Storage Materials, 2020, 30: 52-58. DOI: 10.1016/j.ensm.2020.04.011.
|
34 |
LI Y J, SHA L T, LV P L, et al. Influences of separator thickness and surface coating on lithium dendrite growth: A phase-field study[J]. Materials, 2022, 15(22): 7912. DOI: 10.3390/ma15227912.
|
35 |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. DOI: 10.1016/j.jpowsour.2015.09.055.
|
36 |
JIANG W J, WANG Z H, HU L Z, et al. Simulations of dendrite and crack and their interactions in solid electrolyte by phase field method[J]. Journal of Energy Storage, 2024, 86: 111126. DOI: 10. 1016/j.est.2024.111126.
|
37 |
YAN H H, BIE Y H, CUI X Y, et al. A computational investigation of thermal effect on lithium dendrite growth[J]. Energy Conversion and Management, 2018, 161: 193-204. DOI: 10.1016/j.enconman.2018.02.002.
|
38 |
乔东格, 刘训良, 温治, 等. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. DOI: 10.19799/j.cnki.2095-4239.2021.0629.
|
|
QIAO D G, LIU X L, WEN Z, et al. Numerical analysis of inhibition of lithium dendrite growth by heating and pulse charging[J]. Energy Storage Science and Technology, 2022, 11(3): 1008-1018. DOI: 10.19799/j.cnki.2095-4239.2021.0629.
|
39 |
ZHANG Y X, LI Y F, SHEN W J, et al. Important role of atom diffusion in dendrite growth and the thermal self-healing mechanism[J]. ACS Applied Energy Materials, 2023, 6(3): 1933-1945. DOI: 10.1021/acsaem.2c03864.
|
40 |
PARK M S, MA S B, LEE D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4: 3815. DOI: 10.1038/srep03815.
|
41 |
STEIGER J, KRAMER D, MÖNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. DOI: 10.1016/j.electacta.2014.05.120.
|
42 |
STEIGER J, KRAMER D, MÖNIG R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119. DOI: 10.1016/j.jpowsour. 2014. 03.029.
|
43 |
HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6): 265-274. DOI: 10.1016/j.cplett.2009.12.033.
|