1 |
汪伟伟, 丁楚雄, 高玉仙, 等. 磷酸铁锂及三元电池在不同领域的应用[J]. 电源技术, 2020, 44(9): 1383-1386. DOI: 10.3969/j.issn. 1002-087X.2020.09.036.
|
|
WANG W W, DING C X, GAO Y X, et al. Application of LFP and NCM batteries in different fields[J]. Chinese Journal of Power Sources, 2020, 44(9): 1383-1386. DOI: 10.3969/j.issn.1002-087X. 2020.09.036.
|
2 |
张贵萍, 闫筱炎, 王兵, 等. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. DOI: 10.19799/j.cnki.2095-4239.2023.0381.
|
|
ZHANG G P, YAN X Y, WANG B, et al. Long life lithium iron phosphate battery and its materials and process[J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. DOI: 10.19799/j.cnki.2095-4239.2023.0381.
|
3 |
官亦标, 沈进冉, 刘家亮, 等. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. DOI: 10.19799/j.cnki.2095-4239.2023.0493.
|
|
GUAN Y B, SHEN J R, LIU J L, et al. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications[J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. DOI: 10.19799/j.cnki.2095-4239.2023.0493.
|
4 |
ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries—Current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: 228708. DOI: 10.1016/j.jpowsour.2020.228708.
|
5 |
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. DOI: 10. 1039/C7CS00863E.
|
6 |
谭毅, 王凯. 高比能量锂离子电池硅基负极材料研究进展[J]. 无机材料学报, 2019, 34(4): 349-357. DOI: 10.15541/jim20180347.
|
|
TAN Y, WANG K. Silicon-based anode materials applied in high specific energy lithium-ion batteries: A review[J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. DOI: 10.15541/jim20180347.
|
7 |
徐瑞琳, 曾涛, 刘欢, 等. 磷酸铁锂电池循环初期衰减快原因分析及性能改善[J]. 无机盐工业, 2023, 55(3): 92-97. DOI: 10.19964/j.issn.1006-4990.2022-0275.
|
|
XU R L, ZENG T, LIU H, et al. Cause analysis of early cycling attenuation of LiFePO4 battery and its performance improvement[J]. Inorganic Chemicals Industry, 2023, 55(3): 92-97. DOI: 10. 19964/j.issn.1006-4990.2022-0275.
|
8 |
WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. DOI: 10.1021/acsnano.0c10664.
|
9 |
黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. DOI: 10. 19799/j.cnki.2095-4239.2023.0337.
|
|
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. DOI: 10.19799/j.cnki.2095-4239.2023.0337.
|
10 |
赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. DOI: 10.19799/j.cnki.2095-4239.2020.0340.
|
|
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. DOI: 10.19799/j.cnki.2095-4239.2020.0340.
|
11 |
詹元杰. 正极补锂材料及其在锂离子电池中的应用[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018.
|
12 |
张珊珊, 曾雨乐, 张婷, 等. 锂离子电池正极预锂化技术研究进展[J]. 无机盐工业, 2025, 57(1): 1-13, 26. DOI: 10.19964/j.issn.1006-4990.2024-0284.
|
|
ZHANG S S, ZENG Y L, ZHANG T, et al. Research progress of cathode pre-lithiation technology for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2025, 57(1): 1-13, 26. DOI: 10. 19964/j.issn.1006-4990.2024-0284.
|
13 |
KANG K, CHEN C H, HWANG B J, et al. Synthesis, electrochemical properties, and phase stability of Li2NiO2 with the immm structure[J]. ChemInform, 2004, 35(35): DOI: 10.1002/chin.200435013.
|
14 |
武美玲, 牛磊, 李世友, 等. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. DOI: 10.19799/j.cnki.2095-4239.2023.0809.
|
|
WU M L, NIU L, LI S Y, et al. Research progress on cathode prelithium additives used in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. DOI: 10. 19799/j.cnki.2095-4239.2023.0809.
|
15 |
田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239. 2021. 0066.
|
|
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239.2021.0066.
|
16 |
朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. DOI: 10.19535/j.1001-1579.2018.03.019.
|
|
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209. DOI: 10.19535/j.1001-1579.2018.03.019.
|
17 |
ZHANG H Q, CHENG J, LIU H B, et al. Prelithiation: A critical strategy towards practical application of high-energy-density batteries[J]. Advanced Energy Materials, 2023, 13(27): 2300466. DOI: 10.1002/aenm.202300466.
|
18 |
JIA Y N, YE Y K, LIU J H, et al. Breaking the energy density limit of LiNiO2: Li2NiO3 or Li2NiO2?[J]. Science China Materials, 2022, 65(4): 913-919. DOI: 10.1007/s40843-021-1827-x.
|
19 |
MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. DOI: 10.1016/j.ensm.2022.02.005.
|
20 |
HAN C G, ZHU C Y, SAITO G, et al. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2 -Li2NiO2 solid solution for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2017, 224: 71-79. DOI: 10.1016/j.electacta.2016.12.041.
|
21 |
KIM M G, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. Journal of Materials Chemistry, 2008, 18(48): 5880-5887. DOI: 10.1039/B814161D.
|
22 |
邓孝龙, 王忠明, 冀亚娟. Li2NiO2的加入对LiCoO2/石墨+Si全电池电性能的影响[J]. 电源技术, 2023, 47(1): 28-31.
|
|
DENG X L, WANG Z M, JI Y J. Effects of Li2NiO2 addition on electrical performances of LiCoO2/graphite+Si lithium ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(1): 28-31.
|
23 |
PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. DOI: 10.1016/j.electacta.2013.06.117.
|
24 |
曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究[D]. 广州: 广东工业大学, 2022. DOI: 10.27029/d.cnki.ggdgu. 2022.001873.
|
|
ZENG L Y. Study on preparation and electrochemical properties of lithium-rich compound cathode prelithiation additive for lithium ion batteries[D]. Guangzhou: Guangdong University of Technology, 2022. DOI: 10.27029/d.cnki.ggdgu.2022.001873.
|
25 |
姜媛媛, 屠芳芳, 张芳平, 等. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. DOI: 10.19799/j.cnki.2095-4239.2023.0924.
|
|
JIANG Y Y, TU F F, ZHANG F P, et al. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. DOI: 10.19799/j.cnki.2095-4239. 2023. 0924.
|
26 |
BACK C K, YOON I J, CHOI W U, et al. Gas evolution of overlithiated Li2NiO2 as cathode active material for Li-ion rechargeable batteries and Al2O3 coating to suppress the gas evolution[J]. ECS Meeting Abstracts, 2010, MA2010-01(3): 142. DOI: 10.1149/ma2010-01/3/142.
|
27 |
PARK S, YOU M J, BYEON Y S, et al. Stabilizing the surface of Li2NiO2 cathode additive by coating amorphous niobium oxy-carbide for lithium-ion batteries[J]. Materials Today Energy, 2023, 36: 101351. DOI: 10.1016/j.mtener.2023.101351.
|
29 |
LEE H, CHANG S K, GOH E Y, et al. Li2NiO2 as a novel cathode additive for overdischarge protection of Li-ion batteries[J]. Chemistry of Materials, 2008, 20(1): 5-7. DOI: 10.1021/cm702290p.
|
30 |
LEE H B, BYEON Y S, SONG C H, et al. Surface coating engineering of Li-excess cathode additive of lithium-ion batteries for initial charge compensation[J]. Applied Surface Science, 2023, 622: 156955. DOI: 10.1016/j.apsusc.2023.156955.
|
31 |
高立军, 张亚利. 真空煅烧制备锂离子电池正极材料LiFePO4及电化学性能[J]. 南昌大学学报(理科版), 2008, 32 (3): 239-242+255.
|
|
GAO L J, ZHANG Y L. Preparation of LiFePO4 positive electrode material by vacuum calcinations and its electrochemical performance in lithium-ion batteries[J].Journal of Nanchang University(Natural Science), 2008, 32 (3): 239-242+255.
|
32 |
GUO Y X, LI X H, WANG Z X, et al. LiFePO4/C nano-composites synthesized by vacuum heat solid-phase method[J]. Chinese Journal of Nonferrous Metals, 2010, 20(7): 1402-1406.
|
33 |
喻权, 杨成, 朱振华. 三元正极材料的残碱含量检测方法及其应用: CN110320315A[P]. 2019-10-11.
|
|
YU Q, YANG C, ZHU Z H. Detection method of residual alkali content of ternary anode material and application thereof: CN110320315A[P]. 2019-10-11.
|