1 |
BISWAL B K, ZHANG B, THI MINH TRAN P, et al. Recycling of spent lithium-ion batteries for a sustainable future: Recent advancements[J]. Chemical Society Reviews, 2024, 53(11): 5552-5592. DOI: 10.1039/D3CS00898C.
|
2 |
RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives[J]. Journal of Hazardous Materials, 2022, 429: 128312. DOI: 10.1016/j.jhazmat.2022.128312.
|
3 |
时玮, 张言茹, 陈大分, 等. 锰酸锂动力电池寿命测试方法[J]. 汽车工程, 2015, 37(1): 67-71, 119. DOI: 10.19562/j.chinasae.qcgc. 2015.01.012.
|
|
SHI W, ZHANG Y R, CHEN D F, et al. Lifespan test method for LiMn2O4 traction batteries[J]. Automotive Engineering, 2015, 37(1): 67-71, 119. DOI: 10.19562/j.chinasae.qcgc.2015.01.012.
|
4 |
李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3): 349-366. DOI: 10.13373/j.cnki.cjrm.XY20020020.
|
|
LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: A review[J]. Chinese Journal of Rare Metals, 2022, 46(3): 349-366. DOI: 10.13373/j.cnki.cjrm.XY20020020.
|
5 |
王洋洋. 磷酸铁锂电池荷电状态影响因素的研究[J]. 芜湖职业技术学院学报, 2022, 24(4): 72-75.
|
|
WANG Y Y. Research on the factors influencing the state of charge of lithium iron phosphate battery[J]. Journal of Wuhu Institute of Technology, 2022, 24(4): 72-75.
|
6 |
王翠. 磷酸铁锂与石墨电极活性材料的高效浮选分离基础研究[D]. 长沙: 中南大学, 2023.
|
|
WANG C. Fundamental study on high-efficiency flotation separation of lithium iron phosphate and graphite electrode materials [D]. Changsha: Central South University, 2023.
|
7 |
SHIN S M, KIM N H, SOHN J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181. DOI: 10.1016/j.hydromet.2005.06.004.
|
8 |
ZHANG T, HE Y Q, WANG F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques[J]. Waste Management, 2014, 34(6): 1051-1058. DOI: 10.1016/j.wasman.2014.01.002.
|
9 |
江友周, 王宜, 李淑珍, 等. 退役锂电池有价金属湿化学分离技术研究进展[J]. 化学工业与工程, 2021, 38(6): 23-33. DOI: 10.13353/j.issn.1004.9533.20210822.
|
|
JIANG Y Z, WANG Y, LI S Z, et al. Progress in hydrometallurgical separation and recovery of valuable metals from spent lithium-ion batteries[J]. Chemical Industry and Engineering, 2021, 38(6): 23-33. DOI: 10.13353/j.issn.1004.9533.20210822.
|
10 |
YIN R S, HU S H, YANG Y. Life cycle inventories of the commonly used materials for lithium-ion batteries in China[J]. Journal of Cleaner Production, 2019, 227: 960-971. DOI: 10. 1016/j.jclepro.2019.04.186.
|
11 |
XIONG S Q, JI J P, MA X M. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles[J]. Waste Management, 2020, 102: 579-586. DOI: 10. 1016/j.wasman.2019.11.013.
|
12 |
甘涛. 废旧锂离子电池电极材料磁性分离机制和工艺研究[D]. 广州: 广东工业大学, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001249.
|
|
GAN T. Study on magnetic separation mechanism and technology of electrode materials for waste lithium ion batteries[D]. Guangzhou: Guangdong University of Technology, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001249.
|
13 |
HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. DOI: 10. 1016/j.wasman.2015.08.035.
|
14 |
HAGELÜKEN C. Recycling of electronic scrap at umicore's integrated metals smelter and refinery[J]. World of Metallurgy - ERZMETALL, 2006, 59(3): 152-161.
|
15 |
ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. DOI: 10.1016/j.wasman. 2019.11.045.
|
16 |
AN L. Recycling of spent lithium-ion batteries: processing methods and environmental impacts[M]. Cham: Springer, 2019.
|
17 |
CHEN X P, MA H R, LUO C B, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326: 77-86. DOI: 10.1016/j.jhazmat.2016.12.021.
|
18 |
PORVALI A, AALTONEN M, OJANEN S, et al. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste[J]. Resources, Conservation and Recycling, 2019, 142: 257-266. DOI: 10.1016/j.resconrec.2018.11.023.
|
19 |
赵嘉艺, 王星星, 祁磊, 等. 高梯度磁选理论与技术进展[J]. 矿产保护与利用, 2024, 44(3): 117-126. DOI: 10.13779/j.cnki.issn1001-0076.2024.03.013.
|
|
ZHAO J Y, WANG X X, QI L, et al. Progress in the theory and technology of highgradient magnetic separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 117-126. DOI: 10.13779/j.cnki.issn1001-0076.2024.03.013.
|
20 |
YAMAJI Y, DODBIBA G, MATSUO S, et al. A novel flow sheet for processing of used lithium-ion batteries for recycling[J]. Resources Processing, 2011, 58(1): 9-13. DOI: 10.4144/rpsj.58.9.
|
21 |
HU Z C, LIU J G, GAN T, et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries[J]. Separation and Purification Technology, 2022, 297: 121486. DOI: 10.1016/j.seppur.2022.121486.
|
22 |
耿洪臣, 冯泉, 郭小飞. 磁选技术的现状与发展趋势[J]. 磁性材料及器件, 2010, 41(3): 10-13, 25. DOI: 10.3969/j.issn.1001-3830. 2010.03.002.
|
|
GENG H C, FENG Q, GUO X F. Present status and development trend of magnetic separation technology[J]. Journal of Magnetic Materials and Devices, 2010, 41(3): 10-13, 25. DOI: 10.3969/j.issn.1001-3830.2010.03.002.
|
23 |
马苏杰. 我国磁选设备的现状和发展[J]. 山东工业技术, 2018(4): 65. DOI: 10.16640/j.cnki.37-1222/t.2018.04.058.
|
|
MA S J. The Present Situation and Development of magnetic separation equipment in China[J]. Shandong Industrial Technology, 2018(4): 65. DOI: 10.16640/j.cnki.37-1222/t. 2018. 04.058.
|
24 |
甘涛, 宋卫锋, 刘勇, 等. 废旧电池电极材料的磁性分离机制及其提纯工艺[J]. 中国有色金属学报, 2021, 31(12): 3664-3674.
|
|
GAN T, SONG W F, LIU Y, et al. Magnetic separation mechanism and purification process of spent battery electrode materials[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3664-3674.
|
25 |
HUANG Z, LIN M, QIU R J, et al. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and waterflow-magnetic separation[J]. Resources, Conservation and Recycling, 2021, 164: 105172. DOI: 10.1016/j.resconrec.2020.105172.
|
26 |
LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. DOI: 10.1016/j.jhazmat.2015.09.050.
|
27 |
HUANG Z, ZHU J, QIU R J, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229: 1148-1157. DOI: 10.1016/j.jclepro.2019.05.049.
|
28 |
QIU R J, HUANG Z, ZHENG J Y, et al. Energy models and the process of fluid-magnetic separation for recovering cobalt micro-particles from vacuum reduction products of spent lithium ion batteries[J]. Journal of Cleaner Production, 2021, 279: 123230. DOI: 10.1016/j.jclepro.2020.123230.
|
29 |
HUANG Z, LIU F, MAKUZA B, et al. Metal reclamation from spent lithium-ion battery cathode materials: Directional conversion of metals based on hydrogen reduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 756-765. DOI: 10.1021/acssuschemeng.1c05721.
|
30 |
SMITH Y R, NAGEL J R, RAJAMANI R K. Eddy current separation for recovery of non-ferrous metallic particles: A comprehensive review[J]. Minerals Engineering, 2019, 133: 149-159. DOI: 10.1016/j.mineng.2018.12.025.
|
31 |
REM P C, LEEST P A, VAN DEN AKKER A J. A model for eddy current separation[J]. International Journal of Mineral Processing, 1997, 49(3/4): 193-200. DOI: 10.1016/S0301-7516(96)00045-2.
|
32 |
RUAN J J, QIAN Y M, XU Z M. Environment-friendly technology for recovering nonferrous metals from e-waste: Eddy current separation[J]. Resources, Conservation and Recycling, 2014, 87: 109-116. DOI: 10.1016/j.resconrec.2014.03.017.
|
33 |
BI H J, ZHU H B, ZU L, et al. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries[J]. Waste Management & Research, 2019, 37(12): 1217-1228. DOI: 10.1177/0734242X19871610.
|
34 |
BI H J, ZHU H B, ZU L, et al. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries[J]. Waste Management, 2019, 100: 1-9. DOI: 10.1016/j.wasman.2019.08.041.
|
35 |
DHOLU N, NAGEL J R, COHRS D, et al. Eddy current separation of nonferrous metals using a variable-frequency electromagnet[J]. KONA Powder and Particle Journal, 2017, 34: 241-247. DOI: 10.14356/kona.2017012.
|
36 |
BAI Y X, ZHU H B, ZU L, et al. Eddy current separation of broken lithium battery products in consideration of the shape factor[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 2262-2275. DOI: 10.1007/s10163-023-01681-0.
|