储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 822-834.doi: 10.19799/j.cnki.2095-4239.2022.0699
蒋龙进1(), 张顺1, 乔羽2, 刘臣臻2, 饶中浩2()
收稿日期:
2022-11-28
修回日期:
2022-12-18
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
饶中浩
E-mail:jianglongjin@ah-cy.cn;2021101@hebut.edu.cn
作者简介:
蒋龙进(1982—),男,本科,工程师,研究方向为固废处置及资源综合利用,E-mail:jianglongjin@ah-cy.cn;
基金资助:
Longjin JIANG1(), Shun ZHANG1, Yu QIAO2, Chenzhen LIU2, Zhonghao RAO2()
Received:
2022-11-28
Revised:
2022-12-18
Online:
2023-03-05
Published:
2023-04-14
Contact:
Zhonghao RAO
E-mail:jianglongjin@ah-cy.cn;2021101@hebut.edu.cn
摘要:
为了满足可持续能源和绿色发展的需求,近年来锂电池市场持续增长,势头迅猛。然而,受限于一定的使用寿命,锂电池退役潮也随之来袭,废旧锂电池不仅会造成资源浪费还会产生严重的环境污染,因此废旧锂电池的回收是不可避免的问题。石墨具有成本低、储量丰富、能量密度高、功率密度大及循环寿命长等优点,是一种理想的负极材料,在锂电池负极材料中占据主导地位。目前关于电池回收的研究主要集中于正极材料中金属的回收,但负极材料的回收问题同样不容忽视。本文通过对近期相关研究的探讨,简单回顾了锂电池回收的现状,着重强调了负极石墨材料回收的必要性,介绍了负极部分的主要失效机制包括其对负极石墨材料所造成的影响和变化,总结了废旧锂电池负极石墨的特点。综述了近年来关于锂电池负极石墨材料回收相关研究进展,包括再生、改性及再利用等方面,指出了负极石墨回收所面临的挑战,并对未来锂电池负极石墨材料回收再利用技术提出了展望,以促进电池产业的可持续发展。
中图分类号:
蒋龙进, 张顺, 乔羽, 刘臣臻, 饶中浩. 废旧锂电池负极石墨失效机制及回收利用研究进展[J]. 储能科学与技术, 2023, 12(3): 822-834.
Longjin JIANG, Shun ZHANG, Yu QIAO, Chenzhen LIU, Zhonghao RAO. A review of failure mechanisms and anode graphite recycling from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 822-834.
1 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
2 | XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 1-4. |
3 | 黄艳阳. 中国锂电池行业市场需求预测与投资战略规划分析报告[R]. 北京: 前瞻产业研究院, 2021. |
HUANG Y Y. Report of market demand forecast and investment strategy planning on China lithium batteries industry[R]. Beijing: Qianzhan Industry Research Institute, 2021. | |
4 | ZHENG X H, ZHU Z W, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 361-370. |
5 | ARSENAULT R, RENATA A. Battery recycling overview[R]. Europe: MPSC Battery Recycling Symposium, 2021. |
6 | SCHWARZER S. UNEP/GRID-Geneva. Challenges for the growth of the electric vehicle market[R]. Kenya: the United Nations Environment Programme, 2020. |
7 | NATARAJAN S, ARAVINDAN V. An urgent call to spent LIB recycling: Whys and wherefores for graphite recovery[J]. Advanced Energy Materials, 2020, 10(37): doi: 10.1002/aenm.202002238. |
8 | HUANG W S, FENG X N, HAN X B, et al. Questions and answers relating to lithium-ion battery safety issues[J]. Cell Reports Physical Science, 2021, 2(1): doi: 10.1016/j.xcrp.2020.100285. |
9 | SARKAR A, NLEBEDIM I C, SHROTRIYA P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2021, 502: doi: 10.1016/j.jpowsour.2020.229145. |
10 | CHUNG J. A micro-/ macroscopic safety mechanism study for Li ion battery[J]. ECS Transactions, 2014, 62(1): 203-213. |
11 | MENG X Q, XU Y L, CAO H B, et al. Internal failure of anode materials for lithium batteries—a critical review[J]. Green Energy & Environment, 2020, 5(1): 22-36. |
12 | HORSTMANN B, SINGLE F, LATZ A. Review on multi-scale models of solid-electrolyte interphase formation[J]. Current Opinion in Electrochemistry, 2019, 13: 61-69. |
13 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
14 | AHMAD Z, VENTURI V, HAFIZ H, et al. Interfaces in solid electrolyte interphase: Implications for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(21): 11301-11309. |
15 | ZHENG T, GOZDZ A S, AMATUCCI G G. Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures[J]. Journal of the Electrochemical Society, 1999, 146(11): 4014-4018. |
16 | SATOH A, TAKAMI N, OHSAKI T. Electrochemical intercalation of lithium into graphitized carbons[J]. Solid State Ionics, 1995, 80(3/4): 291-298. |
17 | HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
18 | HERSTEDT M, ABRAHAM D P, KERR J B, et al. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade[J]. Electrochimica Acta, 2004, 49(28): 5097-5110. |
19 | HOU C, HAN J H, LIU P, et al. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy[J]. Advanced Energy Materials, 2019, 9(45): doi: 10.1002/aenm.201902675. |
20 | KIM J, KIM H, RYU J H, et al. Communication—lithium bis(fluorosulfonyl)imide (LiFSI) as a promising salt to suppress solid electrolyte interphase degradation at elevated temperatures[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8fd5. |
21 | LARESGOITI I, KÄBITZ S, ECKER M, et al. Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture[J]. Journal of Power Sources, 2015, 300: 112-122. |
22 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. |
23 | HUANG W, ATTIA P M, WANG H S, et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy[J]. Nano Letters, 2019, 19(8): 5140-5148. |
24 | KONG L X, XING Y J, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access, 2018, 6: 8387-8393. |
25 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
26 | ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(10): 3647-3667. |
27 | ELY D R, GARCÍA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/1.057304jes. |
28 | PERSSON K, SETHURAMAN V A, HARDWICK L J, et al. Lithium diffusion in graphitic carbon[J]. The Journal of Physical Chemistry Letters, 2010, 1(8): 1176-1180. |
29 | HARRIS S J, RAHANI E K, SHENOY V B. Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite electrode[J]. Journal of the Electrochemical Society, 2012, 159(9): doi: 10.1149/2.055209jes. |
30 | MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems[J]. Journal of the Electrochemical Society, 2003, 150(10): doi: 10.1149/1.1606686. |
31 | AKOLKAR R. Modeling dendrite growth during lithium electrodeposition atsub-ambient temperature[J]. Journal of Power Sources, 2014, 246: 84-89. |
32 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
33 | PENG C X, YANG L, FANG S H, et al. Electrochemical behavior of copper current collector in imidazolium-based ionic liquid electrolytes[J]. Journal of Applied Electrochemistry, 2010, 40(3): 653-662. |
34 | SHU J, SHUI M, HUANG F T, et al. Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(8): 3006-3014. |
35 | LIN N, JIA Z, WANG Z H, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. |
36 | LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling[J]. Journal of Power Sources, 2001, 102(1/2): 294-301. |
37 | HARRIS S J, DESHPANDE R D, QI Y, et al. Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress[J]. Journal of Materials Research, 2010, 25(8): 1433-1440. |
38 | AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416. |
39 | LIU X, YIN L, REN D S, et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode[J]. Nature Communications, 2021, 12(1): 1-11. |
40 | MIEHE C, DAL H, SCHÄNZEL L M, et al. A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles[J]. International Journal for Numerical Methods in Engineering, 2016, 106(9): 683-711. |
41 | ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): doi: 10.1002/aenm.202102693. |
42 | LIANG H J, HOU B H, LI W H, et al. Staging Na/K-ion de-/ intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584. |
43 | ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): doi: 10.1002/aenm.202102693. |
44 | CHEN X F, ZHU Y Z, PENG W C, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5(12): 5880-5885. |
45 | WANG H R, HUANG Y S, HUANG C F, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta, 2019, 313: 423-431. |
46 | XIAO H G, JI G J, YE L, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: doi: 10.1016/j.jallcom.2021.161593. |
47 | LIU K, YANG S L, LUO L Q, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta, 2020, 356: doi: 10.1016/j.electacta.2020.136856. |
48 | YANG Y, SONG S L, LEI S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. |
49 | BI H J, ZHU H B, ZU L, et al. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries[J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2019, 37(8): 767-780. |
50 | WANG F F, ZHANG T, HE Y Q, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production, 2018, 185: 646-652. |
51 | ZHANG G W, HE Y Q, FENG Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production, 2018, 199: 62-68. |
52 | 杨生龙, 杨凯雲, 范小萍, 等. 废旧锂离子电池负极片的硫酸浸出回收研究[J]. 电源技术, 2020, 44(3): 364-366, 376. |
YANG S L, YANG K Y, FAN X P, et al. Recycling of negative electrode sheets of spent lithium ion batteries by sulfuric acid leaching[J]. Chinese Journal of Power Sources, 2020, 44(3): 364-366, 376. | |
53 | 詹剑虹, 杜志威, 张思维, 等. 废旧锂离子电池负极石墨闭环回收的基础研究[J]. 电源技术, 2020, 44(2): 173-175, 252. |
ZHAN J H, DU Z W, ZHANG S W, et al. Research on closed-loop recovery of graphite in cathode for spent lithium batteries[J]. Chinese Journal of Power Sources, 2020, 44(2): 173-175, 252. | |
54 | CAO N, ZHANG Y L, CHEN L L, et al. An innovative approach to recover anode from spent lithium-ion battery[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour.2020.229163. |
55 | ZHANG J, LI X L, SONG D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources, 2018, 390: 38-44. |
56 | NATARAJAN S, SHANTHANA LAKSHMI D, BAJAJ H C, et al. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer-graphite nanocomposite thin films[J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2538-2545. |
57 | YU H J, DAI H L, ZHU Y, et al. Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: doi: 10.1016/j.jpowsour.2020.229159. |
58 | MARKEY B, ZHANG M H, ROBB I, et al. Effective upcycling of graphite anode: Healing and doping enabled direct regeneration[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcc2f. |
59 | NATARAJAN S, RAO EDE S, BAJAJ H C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543: 98-108. |
60 | XU Q, WANG Y, SHI X Y, et al. The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li-S batteries[J]. Green Chemistry, 2021, 23(2): 942-950. |
61 | DU K D, MENG Y F, ZHAO X X, et al. A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery[J]. Science China Materials, 2022, 65(3): 637-645. |
62 | DIVYA M L, NATARAJAN S, LEE Y S, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
63 | WANG Y X, CAO H B, CHEN L L, et al. Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination[J]. Applied Catalysis B: Environmental, 2018, 229: 71-80. |
64 | RUAN D S, ZHANG Z H, WU X F, et al. Synthesizing high-quality graphene from spent anode graphite and further functionalization applying in ORR electrocatalyst[J]. ChemistrySelect, 2021, 6(1): 90-95. |
65 | ZHANG W X, LIU Z P, XIA J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): doi: 10.1007/s11783-017-0993-8. |
66 | LI B S, WU C B, XU J D, et al. One-pot redox synthesis of graphene from waste graphite of spent lithium ion batteries with peracetic acid assistance[J]. Materials Chemistry and Physics, 2020, 241: doi: 10.1016/j.matchemphys.2019.122397. |
67 | ZHAO L L, LIU X Y, WAN C Y, et al. Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 875-880. |
68 | KANG S H, YU T, LIU T T, et al. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery[J]. Journal of Colloid and Interface Science, 2018, 512: 489-496. |
69 | ZHANG Y, GUO X M, WU F, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. |
70 | ZHAO T, YAO Y, WANG M L, et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25369-25376. |
71 | RUISMÄKI R, RINNE T, DAŃCZAK A, et al. Integrating flotation and pyrometallurgy for recovering graphite and valuable metals from battery scrap[J]. Metals, 2020, 10(5): doi: 10.3390/met10050680. |
72 | QIAO Y, SHENG W, HE C, et al. A facile freeze-thaw ultrasonic assisted circulation method of graphite flakes prepared by anode graphite from spent lithium-ion batteries for application in nanofluids[J]. Sustainable Energy & Fuels, 2021, 5(19): 4882-4894. |
[1] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[2] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[3] | 姚健, 刘朝阳, 王海, 王佳东, 高宣雯, 李建中, 刘朝孟, 翟玉春, 骆文彬. 正负极混合宏量回收废旧磷酸铁锂电池的探索[J]. 储能科学与技术, 2022, 11(12): 3759-3767. |
[4] | 龙立芬, 张西华, 姚沛帆, 李明杰, 王景伟. 废锂离子电池石墨负极材料利用处理技术研究进展[J]. 储能科学与技术, 2022, 11(10): 3076-3089. |
[5] | 马天翼, 王伟哲, 林春景, 白广利, 韦振, 刘仕强. 磷酸铁锂电池多阶段利用可行性[J]. 储能科学与技术, 2022, 11(1): 119-126. |
[6] | 李红, 储江伟, 孙术发, 李宏刚. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
[7] | 祝保红, 李光军, 李树胜, 崔亚东. 基于储能飞轮的油井发电机功率补偿与节能应用[J]. 储能科学与技术, 2021, 10(3): 1088-1094. |
[8] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
[9] | 曹锐鑫, 张 瑾, 朱嘉坤. 用户侧电化学储能装置最优系统配置与充放电策略研究[J]. 储能科学与技术, 2020, 9(6): 1890-1896. |
[10] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. |
[11] | 孙守斌, 姚华, 刘常鹏, 黄云, 马光宇, 张天赋, 王向锋. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734. |
[12] | 范二莎, 李丽, 林娇, 张晓东, 陈人杰, 吴锋. 低温熔融盐辅助高效回收废旧三元正极材料[J]. 储能科学与技术, 2020, 9(2): 361-367. |
[13] | 葛昊, 李哲, 张剑波. 锂离子电池开路电压曲线形状与多阶段容量损失[J]. 储能科学与技术, 2019, 8(6): 1089-1095. |
[14] | 武利会, 岳芬, 宋安琪, 邱太洪, 董镝, 罗容波, 范心明, 李新. 分布式储能的商业模式对比分析[J]. 储能科学与技术, 2019, 8(5): 960-966. |
[15] | 陈永珍, 黎华玲, 宋文吉, 涂小琳, 冯自平. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||