储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4384-4395.doi: 10.19799/j.cnki.2095-4239.2024.0780

• 热化学储能专刊 • 上一篇    下一篇

耦合低温余热回收的热泵储电系统热力学性能研究

冯军胜1(), 严亚茹1, 王璐1, 赵亮2, 董辉2()   

  1. 1.安徽建筑大学环境与能源工程学院,安徽 合肥 230601
    2.东北大学冶金学院,辽宁 沈阳 110819
  • 收稿日期:2024-08-20 修回日期:2024-09-04 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 董辉 E-mail:fjsheng076@163.com;Dongh@mail.neu.edu.cn
  • 作者简介:冯军胜(1988—),男,博士,副教授,从事烧结余热回收利用、新型热力循环等方面的研究,E-mail:fjsheng076@163.com
  • 基金资助:
    国家自然科学基金资助项目(51974087);安徽省高等学校科学研究项目(2022AH050262);安徽省自然科学基金资助项目(1908085QE203)

Thermodynamic performance study of a pumped thermal energy storage system coupled with low-temperature waste heat recovery

Junsheng FENG1(), Yaru YAN1, Lu WANG1, Liang ZHAO2, Hui DONG2()   

  1. 1.School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
    2.School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
  • Received:2024-08-20 Revised:2024-09-04 Online:2024-12-28 Published:2024-12-23
  • Contact: Hui DONG E-mail:fjsheng076@163.com;Dongh@mail.neu.edu.cn

摘要:

为了有效回收钢铁行业低温余热资源,本工作将低温烧结冷却烟气余热引入热泵储电(PTES)系统作为热源,分别构建基本型PTES(B-PTES)系统和回热型PTES(R-PTES)系统的热力学计算模型,并选取R365mfc为热泵(HP)循环工质,同时将R1233zd(E)、R245ca、R236ea设定为有机朗肯循环(ORC)工质,研究不同ORC工质条件下HP冷凝温度、HP蒸发温度和ORC蒸发温度对B-PTES和R-PTES系统热力学性能的影响。研究结果表明,降低HP冷凝温度、提高HP蒸发温度和ORC蒸发温度均可以提高PTES系统的制热系数(COPnew)、功率效率(ηptp)。HP冷凝温度越高,HP蒸发温度和ORC蒸发温度越低,系统㶲效率(ηex)越小。在系统热力学参数相同的情况下,R-PTES系统的COPnewηptpηex均大于B-PTES系统。综合考虑PTES系统的COPnewηptpηex,B-PTES系统采用R1233zd(E)作为ORC循环工质时系统性能最优,其次是R245ca和R236ea;R-PTES系统采用R245ca作为ORC循环工质时系统性能最优,其次是R1233zd(E)和R236ea。当ORC工质为R245ca时,HP冷凝温度每升高2℃,B-PTES和R-PTES系统的ηex分别平均减小0.5%和0.53%;HP蒸发温度每升高2 ℃,B-PTES和R-PTES系统的ηex分别平均增加0.2%和0.21%;而ORC蒸发温度每升高2℃,B-PTES和R-PTES系统的ηex分别平均增加0.55%和0.63%。在低温烧结烟气余热驱动的PTES系统中,应优先选择R-PTES系统,同时将R245ca作为ORC系统循环工质。

关键词: 余热回收, 热泵储电, 有机朗肯循环, 回热结构, 热力学性能

Abstract:

To effectively recover low-temperature waste heat resource in the steel industry, we have integrated the low-temperature sinter cooling flue gas waste heat as a heat source in a pumped thermal energy storage (PTES) system. We constructed thermodynamic calculation models for basic PTES (B-PTES) and regenerative PTES (R-PTES) systems. The R365mfc was selected as the cycle working medium of heat pump (HP), while the R1233zd(E), R245ca and R236ea were set as the working mediums for the organic Rankine cycle (ORC). Our study examined how the HP condensation and evaporation temperatures, as well as the ORC evaporation temperature, affect the thermodynamic performance of B-PTES and R-PTES systems under different ORC working medium conditions. The results show that reducing the HP condensation temperature and increasing the evaporation temperatures of HP and ORC can improve the heating coefficient (COPnew) and power efficiency (ηptp) of the PTES system. However, higher HP condensation temperatures, lower HP evaporation temperatures, and lower ORC evaporation temperatures decrease the system's exergy efficiency (ηex). For identical thermodynamic parameters, the R-PTES system consistently outperforms the B-PTES system in terms of COPnew, ηptp, and ηex. Evaluating the overall performance, the B-PTES system achieves optimal results with R1233zd(E) as the ORC medium, followed by R245ca and R236ea. Conversely, the R-PTES system performs best with R245ca, followed by R1233zd(E) and R236ea. Specifically, when using R245ca as the ORC working medium, increasing the HP condensation temperature by 2℃ results in an average ηex decrease of 0.5% for B-PTES and 0.53% for R-PTES. Conversely, raising the HP evaporation temperature by 2℃ leads to an average ηex increase of 0.2% for B-PTES and 0.21% for R-PTES. Furthermore, a 2℃ in ORC evaporation temperature results in an average ηex improvement of 0.55% for B-PTES and 0.63% for R-PTES. Overall, for systems driven by low-temperature sinter flue gas waste heat, the R-PTES system is recommended, particularly using R245ca as the cycle working medium of the ORC system.

Key words: waste heat recovery, pumped thermal energy storage, organic Rankine cycle, regenerative structure, thermodynamic performance

中图分类号: