1 |
武强, 涂坤, 曾一凡. "双碳"目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898.
|
|
WU Q, TU K, ZENG Y F. Research on China's energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898.
|
2 |
郑天一, 简析储能技术的应用研究[C]. 第三十六届中国(天津)2022' IT、网络、信息技术、电子、仪器仪表创新学术会议论文集, 2022: 178-181.
|
|
ZHENG T Y. A brief analysis of the application research of energy storage technology[C]// Proceedings of the 36th China (Tianjin) 2022' IT, Network, Information Technology, Electronics, Instrumentation Innovation Academic Conference, 2022: 178-181.
|
3 |
张琼, 王亮, 徐玉杰, 等. 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38(01): 178-185+354.
|
|
ZHANG Q, WANG L, XU Y J, et al. Research progress in pumped heat electricity storage system: A Review[J]. Proceedings of the CSEE, 2018, 38(01): 178-185+354.
|
4 |
张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(08): 43-49+63.
|
|
ZHANG J Y, WANG H, BAI N, et al. Thermodynamic analysis for heat pump electricity storage system[J]. Thermal Power Generation, 2020, 49(08): 43-49+63.
|
5 |
殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(05): 784-790.
|
|
YIN Z Y, DAI Y, XU B, et al. New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable Energy Resources, 2019, 37(05): 784-790.
|
6 |
DAVENNE T R, PETERS B. An analysis of pumped thermal energy storage with De-coupled thermal stores[J]. Frontiers in Energy Research, 2020, 8: 160.
|
7 |
张琼. 新型热泵储电技术仿真研究[D]. 中国科学院大学(中国科学院工程热物理研究所), 2017.
|
|
ZHANG Q. Simulation research on the novel pumped thermal electricity storage technology[D]. Institute of Engineering Thermophysics Chinese Academy of Sciences, 2017.
|
8 |
WANG L, LIN X P, ZHANG H, et al. Analytic optimization of Joule-Brayton cycle-based pumped thermal electricity storage system[J]. Journal of Energy Storage, 2022, 47: 1036603.
|
9 |
PALOMBA V, FRAZZICA A. Recent advancements in sorption technology for solar thermal energy storage applications[J]. Solar Energy, 2019, 192: 69-105.
|
10 |
凌祥,宋丹阳,陈晓轶, 等. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(04): 1777-1796.
|
|
LING X, SONG D Y, CHEN X Y, et al. Progress in equipment and systems for calcium-based thermochemical energy storage system[J]. Chemical Industry and Engineering Progress, 2021, 40(04): 1777-1796.
|
11 |
CHEN X Y, JIN X G, LING X, et al. Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle[J]. Energy, 2020, 209: 118452.
|
12 |
LIU Z Y, ZHANG H, JIN X, et al. Thermal economy analysis and multi-objective optimization of a small CO2 transcritical pumped thermal electricity storage system[J]. Energy Conversion and Management, 2023, 293: 117451.
|
13 |
张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(05): 1796-1805.
|
|
ZHANG H, WANG L, LlN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(05): 1796-1805.
|
14 |
SCHAUBE F, KOCH L, WÖRNER A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20.
|
15 |
TOFFOLO A, LAZZARETTO A, MORANDIN M. The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle[J]. Energy, 2010, 35(2): 976-981.
|
16 |
KEMP I C, Pinch analysis and process integration: A user guide on process integration for the effcient use of energy[M]. 2nd ed. Oxford: Elsevier Ltd., 2007.
|
17 |
陈璐璐, 邱建林, 陈燕云, 等. 改进的遗传粒子群混合优化算法[J]. 计算机工程与设计, 2017, 38(02): 395-399.
|
|
CHEN L L, QlU J L, CHEN Y Y, et al. Improved hybrid optimization algorithms based on genetic algorithm and particle swarm optimization[J]. Computer Engineering and Design, 2017, 38(02): 395-399.
|
18 |
KORAKIANITIS T, WILSON D G. Models for predicting the performance of Brayton-cycle engines[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 1994, 116(2): 381-388.
|