储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3596-3612.doi: 10.19799/j.cnki.2095-4239.2024.0290

• 储能系统与工程 • 上一篇    下一篇

液冷散热技术在电化学储能系统中的研究进展

吴超(), 王罗亚, 袁子杰, 马昌龙, 叶季蕾(), 吴宇平, 刘丽丽   

  1. 南京工业大学能源科学与工程学院,江苏 南京 211816
  • 收稿日期:2024-04-01 修回日期:2024-04-24 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 叶季蕾 E-mail:wu1207655278@163.com;yejilei@njtech.edu.cn
  • 作者简介:吴超(1999—),男,硕士研究生,研究方向为储能电池热管理,E-mail:wu1207655278@163.com
  • 基金资助:
    国家重点研发计划(2021YFB2400205)

Research progress in liquid cooling and heat dissipation technologies for electrochemical energy storage systems

Chao WU(), Luoya WANG, Zijie YUAN, Changlong MA, Jilei YE(), Yuping WU, Lili LIU   

  1. School of Energy Science and Engineering, Nanjing University of Technology, Nanjing 211816, Jiangsu, China
  • Received:2024-04-01 Revised:2024-04-24 Online:2024-10-28 Published:2024-10-30
  • Contact: Jilei YE E-mail:wu1207655278@163.com;yejilei@njtech.edu.cn

摘要:

随着锂离子电池技术的进步和成本的降低,大规模锂离子电池储能电站从示范逐渐走向商业化应用。电池热管理系统的优化设计是提升储能系统集成综合性能的关键技术,通过温度的控制不仅可以有效延长储能电池寿命、提升放电容量等,而且可以确保电站安全运行。电池作为大型电化学储能电站的载体,热安全问题的解决刻不容缓。本文对比了风冷、液冷、相变材料冷却和热管冷却4种散热技术的温降、温度均一性、系统结构、技术成熟度等,液冷散热系统在大容量锂离子电池储能系统中更具优势。液冷散热系统设计包括冷却剂通道、冷板形状、冷却液等关键参数设计,并可通过与其他散热方式进行复合优化设计,进一步提升系统的电热性能;通过控制目标、控制算法的优化,可实现电池模块温度的智能化、精准化控制,并提高热管理系统效率。液冷散热技术仍需从系统关键参数设计、控制策略优化、应用需求进行多角度优化,从而既能实现温度控制的效果,又能满足经济高效的应用目标。

关键词: 液冷, 热管理, 参数优化, 散热性能, 策略优化

Abstract:

With advancements in lithium-ion battery technology and decreasing costs, large-scale lithium-ion battery energy storage systems are transitioning from demonstration phases to commercial applications. Optimizing the design of battery thermal management systems is crucial for enhancing the overall performance of energy storage systems. Effective temperature control not only extends the lifespan and discharge capacity of energy storage batteries but also plays a vital role in ensuring the safe operation of power plants. As large-scale electrochemical energy storage power stations increasingly rely on lithium-ion batteries, addressing thermal safety concerns has become urgent. The study compares four cooling technologies—air cooling, liquid cooling, phase change material cooling, and heat pipe cooling—assessing their effectiveness in terms of temperature reduction, temperature uniformity, system structure, and technology maturity. The findings indicate that liquid cooling systems offer significant advantages for large-capacity lithium-ion battery energy storage systems. Key design considerations for liquid cooling heat dissipation systems include parameters such as coolant channels, cold plate shapes, and types of coolant used. Furthermore, the liquid cooling system can be optimized in conjunction with other cooling methods to enhance the thermal performance of the system. By refining control targets and algorithms, intelligent and precise management of battery module temperature can be achieved, thereby improving the overall efficiency of the thermal management system. Liquid cooling technology requires ongoing optimization in several areas, including key system parameter design, control strategy development, and application requirements, to achieve effective temperature control and meet economic and efficiency goals.

Key words: liquid cooling, thermal management, parameter optimization, heat dissipation performance, strategy optimization

中图分类号: