储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4259-4271.doi: articletype:10.19799/j.cnki.2095-4239.2024.0875
收稿日期:
2024-09-18
修回日期:
2024-09-30
出版日期:
2024-12-28
发布日期:
2024-12-23
Jie CHEN(), Hongkun MA(
), Yulong DING(
)
Received:
2024-09-18
Revised:
2024-09-30
Online:
2024-12-28
Published:
2024-12-23
Contact:
Hongkun MA, Yulong DING
E-mail:j.chen.9@bham.ac.uk;h.ma.5@bham.ac.uk;y.ding@bham.ac.uk
About author:
CHEN Jie, PhD, facility manager, her research focuses on thermochemical energy storage and advanced material characterization techniques, E-mail: j.chen.9@bham.ac.uk; Corresponding author:中图分类号:
. [J]. 储能科学与技术, 2024, 13(12): 4259-4271.
Jie CHEN, Hongkun MA, Yulong DING. MgSO4·7H2O for thermochemical energy storage: Hydration/dehydration kinetics and cyclability[J]. Energy Storage Science and Technology, 2024, 13(12): 4259-4271.
1 | AYDIN D, CASEY S P, RIFFAT S, The latest advancements on thermochemical heat storage systems[J]. Renewable & Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser. 2014. 08.054. |
2 | ABEDIN A H, ROSEN M A. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011(4): 42-46. |
3 | GABRIELLI P, ACQUILINO A, SIRI S, et al. Optimization of low-carbon multi-energy systems with seasonal geothermal energy storage: The anergy grid of ETH zurich[J]. Energy Conversion and Management X, 2020: DOI:10.1016/j.ecmx.2020.100052. |
4 | TESIO U, GUELPA E, ORTIZ C, et al. Optimized synthesis/design of the carbonator side for direct integration of thermochemical energy storage in small size Concentrated Solar Power[J]. Energy Conversion and Management: X, 2019, 4: DOI:10.1016/j.ecmx.2019.100025. |
5 | DING Y T, RIFFAT S B. Thermochemical energy storage technologies for building applications: A state-of-the-art review[J]. International Journal of Low-Carbon Technologies, 2013, 8(2): 106-116. DOI: 10.1093/ijlct/cts004. |
6 | ABEDIN A, ROSEN M. Closed and open thermochemical energy storage: Energy and exergy-based comparisons[J]. Fuel and Energy Abstracts, 2012, 41(1): 83-92. DOI: 10.1016/j.energy.2011.06.034. |
7 | PINTALDI S. Medium temperature thermal energy storagefor high efficiency solar cooling applications[D]. DOI:10.1016/j.apenergy.2016.11.123. |
8 | CUYPERS R, MARAZ N, EVERSDIJK J, et al. Development of a seasonal thermochemical storage system[J]. Energy Procedia, 2012, 30: 207-214. DOI: 10.1016/j.egypro.2012.11.025. |
9 | TESIO U, GUELPA E, VERDA V. Integration of thermochemical energy storage in concentrated solar power. part 2: Comprehensive optimization of supercritical CO2 power block[J]. Energy Conversion and Management: X, 2020, 6: 100038. DOI: 10.1016/j.ecmx.2020.100038. |
10 | TESIO U, GUELPA E, VERDA V. Integration of thermochemical energy storage in concentrated solar power. part 1: Energy and economic analysis/optimization[J]. Energy Conversion and Management: X, 2020, 6: 100039. DOI: 10.1016/j.ecmx. 2020. 100039. |
11 | PARAMESHWARAN R, KALAISELVAM S, HARIKRISHNAN S, et al. Sustainable thermal energy storage technologies for buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2394-2433. |
12 | SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. DOI: 10.1016/j.apenergy. 2016. 12.148. |
13 | PINEL P, CRUICKSHANK C A, BEAUSOLEIL-MORRISON I, et al. A review of available methods for seasonal storage of solar thermal energy in residential applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(7): 3341-3359. |
14 | XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103: 610-638. DOI: 10.1016/j.solener.2013.06.006. |
15 | POSERN K, KAPS C. Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates[J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(3): 905-909. DOI: 10.1007/s10973-007-8640-4. |
16 | VOORT I V D. Characterization of a thermochemical storage material[D]. Eindhoven University of Technology, 2007. |
17 | ZONDAG H A. Characterisation of MgSO4 for thermochemical storage[D]. ECN, 2007. |
18 | FERCHAUD C J, ZONDAG H A, VELDHUIS J, et al. Study of the reversible water vapour sorption process of MgSO4·7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage[J]. Journal of Physics: Conference Series, 2012, 395: 012069. DOI: 10.1088/1742-6596/395/1/012069. |
19 | STACH H, MUGELE J, JÄNCHEN J, et al. Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents[J]. Adsorption, 2005, 11(3): 393-404. DOI: 10.1007/s10450-005-5405-x. |
20 | BALASUBRAMANIAN G, GHOMMEM M, HAJJ M R, et al. Modeling of thermochemical energy storage by salt hydrates[J]. International Journal of Heat and Mass Transfer, 2010, 53(25/26): 5700-5706. DOI: 10.1016/j.ijheatmasstransfer.2010.08.012. |
21 | HONGOIS S, KUZNIK F, STEVENS P, et al. Thermochemical storage using composite materials: From the material to the system[C]//International Conference on Solar Heating, Cooling and Buildings, 2010. |
22 | FERCHAUD C J, SCHERPENBORG R A A, ZONDAG H A, et al. Thermochemical seasonal solar heat storage in salt hydrates for residential applications-influence of the water vapor pressure on the desorption kinetics of MgSO4·7H2O[J]. Energy Procedia, 2014, 57: 2436-2440. DOI: 10.1016/j.egypro.2014.10.252. |
23 | GUREVICH V M, KUSKOV O L, GAVRICHEV K S, et al. Heat capacity and thermodynamic functions of epsomite MgSO4·7H2O at 0—303 K[J]. Geochemistry International, 2007, 45(2): 206-209. DOI: 10.1134/s0016702907020103. |
24 | RUIZ-AGUDO E, MARTÍN-RAMOS J D, RODRIGUEZ-NAVARRO C. Mechanism and kinetics of dehydration of epsomite crystals formed in the presence of organic additives[J]. The Journal of Physical Chemistry B, 2007, 111(1): 41-52. DOI: 10.1021/jp064460b. |
25 | OKHRIMENKO L, FAVERGEON L, JOHANNES K, et al. Thermodynamic study of MgSO4-H2O system dehydration at low pressure in view of heat storage[J]. Thermochimica Acta, 2017, 656: 135-143. DOI: 10.1016/j.tca.2017.08.015. |
26 | LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48: 394-404. |
27 | POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502(1/2): 73-76. DOI: 10.1016/j.tca.2010.02.009. |
28 | DONKERS P A J, PEL L, ADAN O C G. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5: 25-32. DOI: 10.1016/j.est.2015.11.005. |
29 | GSCHWANDER S, HAUSSMANN T, HAGELSTEIN G, et al. Standardization of PCM characterization via DSC[C]//International Institute of Refrigeration (Institut International du Froid), German, 2015. |
30 | MÜLLER L, RUBIO-PÉREZ G, BACH A, et al. Consistent DSC and TGA methodology as basis for the measurement and comparison of thermo-physical properties of phase change materials[J]. Materials, 2020, 13(20): 4486. DOI: 10.3390/ma13204486. |
31 | STEIGER M, LINNOW K, JULING H, et al. Hydration of MgSO4·H2O and generation of stress in porous materials[J]. Crystal Growth & Design, 2008, 8(1): 336-343. DOI: 10.1021/cg060688c. |
[1] | 宋文俊, 贺中禄, 曹彬, 梁子薇, 郭春梅. 基于亚临界有机朗肯循环的热泵储电系统性能实验研究[J]. 储能科学与技术, 2024, 13(12): 4339-4348. |
[2] | 张玉杰, 陈讲运, 李建强, 代彦军. 《中国蓄热储能产业发展报告(2024)》——产业技术、发展现状与典型示范[J]. 储能科学与技术, 2024, 13(12): 4452-4463. |
[3] | 陈莎, 陈岳浩, 孙小琴, 廖曙光. 碳基纳米石蜡复合相变储能材料制备与性能研究[J]. 储能科学与技术, 2024, 13(12): 4349-4356. |
[4] | 王利明, 王梦奇, 罗伊默, 杨格桑, 汪媛媛, 王乐霄. 沸石储热反应器优化设计方法研究[J]. 储能科学与技术, 2024, 13(12): 4272-4281. |
[5] | 徐书彧, 王燕. 基于MgSO4 的热化学储能特性数值研究[J]. 储能科学与技术, 2024, 13(12): 4299-4309. |
[6] | 姚亮, 贺楠, 陈奇成. 氧化钙基多级孔隙结构储热模块的制备及其储热性能[J]. 储能科学与技术, 2024, 13(12): 4282-4289. |
[7] | 丁扬, 王翰文, 陆文杰, 罗元俊, 凌祥. 基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究[J]. 储能科学与技术, 2024, 13(12): 4247-4258. |
[8] | 马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451. |
[9] | 肖振坤, 陈珍, 杨壮, 戚宏勋, 闫君. 基于相变储热的先进高温热泵储能单元的热力学分析[J]. 储能科学与技术, 2024, 13(12): 4330-4338. |
[10] | 王乐霄, 罗伊默, 王利明, 杨格桑. 水合盐热化学反应器多因素耦合作用下的性能研究[J]. 储能科学与技术, 2024, 13(12): 4396-4405. |
[11] | 朱杰. 新能源低碳背景下电动汽车电热相变储能系统的储热性能分析[J]. 储能科学与技术, 2024, 13(12): 4406-4408. |
[12] | 任艳梅. 大数据人工智能在化学储能供热系统动态调度中的应用与优化[J]. 储能科学与技术, 2024, 13(12): 4464-4466. |
[13] | 萨仁高娃, 邬超慧, 倪泽龙, 张悦, 姜新建, 田建宇. 基于强化学习的变参数PID的惯量飞轮有功控制策略[J]. 储能科学与技术, 2024, (): 1-10. |
[14] | 代建龙, 李果, 曹一通, 杨紫涵, 夏志远, 张恭硕, 陈锐, 盛楠, 朱春宇. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024, 13(11): 3764-3771. |
[15] | 熊霄. 基于节能降耗的飞轮储能电力计量技术[J]. 储能科学与技术, 2024, 13(11): 4201-4203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||