储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4247-4258.doi: 10.19799/j.cnki.2095-4239.2024.0918

• 热化学储能专刊 •    下一篇

基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究

丁扬(), 王翰文, 陆文杰, 罗元俊, 凌祥()   

  1. 南京工业大学机械与动力工程学院,江苏 南京 211816
  • 收稿日期:2024-09-29 修回日期:2024-10-16 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 凌祥 E-mail:yding_9@njtech.edu.cn;xling@njtech.edu.cn
  • 作者简介:丁扬(1999—),男,博士研究生,研究方向为热化学储能,E-mail:yding_9@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(22338008)

Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage

Yang DING(), Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING()   

  1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2024-09-29 Revised:2024-10-16 Online:2024-12-28 Published:2024-12-23
  • Contact: Xiang LING E-mail:yding_9@njtech.edu.cn;xling@njtech.edu.cn

摘要:

为应对能源短缺危机和时空分布不均的挑战,本工作结合钙基热化学储能与热泵储电的优势,提出一种新型耦合系统。通过热泵为分解反应供热以高密度储能,水合反应放热驱动发电高效释能,杜绝存储过程能量耗散,实现长时大规模储能。分析操作参数对往返效率的影响,在本工作考察范围内储能过程循环压比增加正向提升往返效率,但过高的压比加大设备负担且边际效用递减。热泵吸热温度和分解反应温度不宜偏离过远,370 ℃、415 ℃时往返效率分别最高,需尽可能降低夹点温度,避免高品位热能降级使用。释能过程提高发电循环压比或使中间级压力接近理想值,可增加循环净功,往返效率升高。更高的水合反应温度、热机吸热温度以及Ca(OH)2存储温度对往返效率有增益效果,而CaO和H2O预热温度影响甚微。采用“黑箱”模型和夹点方法,并借助改进的遗传算法优化系统参数。换热网络㶲损得到有效控制,往返效率最高可达65.96%,是一种颇具竞争力的能量存储方式。

关键词: 钙基热化学储能, 热泵储电, 卡诺电池, 参数优化, 往返效率

Abstract:

To tackle energy shortages and their uneven distribution, we propose a novel and advantageous coupled system that integrates Ca-looping thermochemical energy storage and pumped thermal electricity storage. In this system, charging is accomplished by using a heat pump to supply heat for the dehydration process, while discharging leverages the heat generated from hydration to produce electricity. This approach effectively eliminates thermal dissipation losses during storage, enabling long-term, large-scale energy storage. Our analysis highlights the impact of various operating parameters on cycle efficiency. Increasing the cycle pressure ratio during charging positively affects cycle efficiency but also increases a greater burden on the system, leading to diminishing marginal returns. The absorption temperature of the heat pump and dehydration temperature should be closely aligned to optimize performance. Minimizing the pinch temperature is crucial to enhance thermal energy utilization. During discharging, increasing the pressure ratio or aligning the intermediate pressure with the ideal value boosts the net power of the cycle, thereby enhancing cycle efficiency. Higher heat absorption temperatures of the generator and hydration temperatures, along with elevated storage temperatures of Ca(OH)2, improve outcomes. However, the preheating temperatures of CaO and H2O have a small impact. We employed the black-box concept, pinch analysis, and an improved genetic algorithm for optimization. This approach effectively controls exergy loss in the heat exchange network, achieving a maximum cycle efficiency of 65.96%. These results demonstrate the system competitiveness as a viable energy storage solution.

Key words: Ca-looping thermochemical energy storage, pumped thermal electricity storage, Carnot battery, parameter optimization, cycle efficiency

中图分类号: