1 |
International Energy Agency. World energy outlook 2023[EB/OL]. https://www.iea.org/reports/world-energy-outlook-2023.
|
2 |
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054.
|
3 |
ALVAREZ RIVERO M, RODRIGUES D, PINHEIRO C I C, et al. Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112048. DOI: 10.1016/j.rser.2021.112048.
|
4 |
PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. DOI: 10.1016/j.rser.2013.12.014.
|
5 |
BENITEZ-GUERRERO M, SARRION B, PEREJON A, et al. Large-scale high-temperature solar energy storage using natural minerals[J]. Solar Energy Materials and Solar Cells, 2017, 168: 14-21. DOI: 10.1016/j.solmat.2017.04.013.
|
6 |
MOLINDER R, COMYN T P, HONDOW N, et al. In situ X-ray diffraction of CaO based CO2 sorbents[J]. Energy & Environmental Science, 2012, 5(10): 8958-8969. DOI: 10.1039/C2EE21779A.
|
7 |
BENITEZ-GUERRERO M, VALVERDE J M, SANCHEZ-JIMENEZ P E, et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants[J]. Solar Energy, 2017, 153: 188-199. DOI: 10.1016/j.solener.2017.05.068.
|
8 |
KHOSA A A, HAN X Y, ZHAO C Y. Experimental investigation of CaCO3/CaO reaction pair in a fixed bed reactor for CSP application[J]. Renewable Energy, 2024, 221: 119731. DOI: 10.1016/j.renene.2023.119731.
|
9 |
SZULC A, SKOTNICKA E, GUPTA M K, et al. Powder agglomeration processes of bulk materials-A state of the art review on different granulation methods and applications[J]. Powder Technology, 2024, 431: 119092. DOI: 10.1016/j.powtec.2023.119092.
|
10 |
HO C K, IVERSON B D. Review of high-temperature central receiver designs for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 835-846. DOI: 10.1016/j.rser.2013.08.099.
|
11 |
ZHANG Y H, LI Y J, XU Y F, et al. CaO/CaCO3 thermochemical energy storage performance of MgO/ZnO Co-doped CaO honeycomb in cycles[J]. Journal of Energy Storage, 2023, 66: 107447. DOI: 10.1016/j.est.2023.107447.
|
12 |
SINGH A, TESCARI S, LANTIN G, et al. Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modelling and experimental validation[J]. Solar Energy, 2017, 144: 453-465. DOI: 10.1016/j.solener.2017.01.052.
|
13 |
CHEN X Y, KUBOTA M, KOBAYASHI N, et al. Development of redox-type thermochemical energy storage module: A support-free porous foam made of CuMn2O4/CuMnO2 redox couple[J]. Chemical Engineering Journal, 2024, 485: 149540. DOI: 10.1016/j.cej.2024.149540.
|
14 |
ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. The calcium-looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109252. DOI: 10.1016/j.rser.2019.109252.
|
15 |
ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. Carbonation of limestone derived CaO for thermochemical energy storage: From kinetics to process integration in concentrating solar plants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6404-6417. DOI: 10.1021/acssuschemeng.8b00199.
|
16 |
MARTÍNEZ A, LARA Y, LISBONA P, et al. Energy penalty reduction in the calcium looping cycle[J]. International Journal of Greenhouse Gas Control, 2012, 7: 74-81. DOI: 10.1016/j.ijggc. 2011.12.005.
|
17 |
LARA Y, LISBONA P, MARTÍNEZ A, et al. Comparative study of optimized purge flow in a CO2 capture system using different sorbents[J]. Energy Procedia, 2009, 1(1): 1359-1366. DOI: 10.1016/j.egypro.2009.01.178.
|
18 |
KHOSA A A, ZHAO C Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica[J]. Solar Energy, 2019, 188: 619-630. DOI: 10.1016/j.solener.2019.06.048.
|
19 |
ABREU M, TEIXEIRA P, FILIPE R M, et al. Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture[J]. Computers & Chemical Engineering, 2020, 134: 106679. DOI: 10.1016/j.compchemeng.2019.106679.
|
20 |
CHAMPAGNE S, LU D Y, MACCHI A, et al. Influence of steam injection during calcination on the reactivity of CaO-based sorbent for carbon capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(6): 2241-2246. DOI: 10.1021/ie3012787.
|
21 |
SARRIÓN B, PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, et al. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J]. Journal of CO2 Utilization, 2018, 28: 374-384. DOI: 10.1016/j.jcou.2018.10.018.
|
22 |
XU Y F, LI Y J, ZHANG C X, et al. High-temperature thermochemical heat storage performance of CaO honeycombs during CaO/CaCO3 cycles[J]. Energy & Fuels, 2021, 35(20): 16882-16893. DOI: 10.1021/acs.energyfuels.1c02274.
|
23 |
SUN P, GRACE J R, LIM C J, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE Journal, 2007, 53(9): 2432-2442. DOI: 10.1002/aic.11251.
|
24 |
GENG Y, GUO Y, FAN B, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49: 998-1013.
|