储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4282-4289.doi: 10.19799/j.cnki.2095-4239.2024.0863

• 热化学储能专刊 • 上一篇    下一篇

氧化钙基多级孔隙结构储热模块的制备及其储热性能

姚亮(), 贺楠(), 陈奇成()   

  1. 东北电力大学,吉林 吉林 132012
  • 收稿日期:2024-09-13 修回日期:2024-09-26 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 贺楠,陈奇成 E-mail:2202100517@neepu.edu.cn;henan@neepu.edu.cn;chenqicheng2010@hotmail.com
  • 作者简介:姚亮(1997—),男,博士研究生,研究方向为热化学储能,E-mail:2202100517@neepu.edu.cn
  • 基金资助:
    国家自然科学基金(52222603)

Preparation and thermal storage properties of CaO-based thermal storage module with a hierarchically porous structure

Liang YAO(), Nan HE(), Qicheng CHEN()   

  1. Northeast Electric Power University, Jilin 132012, Jilin, China
  • Received:2024-09-13 Revised:2024-09-26 Online:2024-12-28 Published:2024-12-23
  • Contact: Nan HE, Qicheng CHEN E-mail:2202100517@neepu.edu.cn;henan@neepu.edu.cn;chenqicheng2010@hotmail.com

摘要:

钙循环技术由于其储热密度高,原料成本低,对环境友好等优势,被广泛视为一种发展潜力巨大的热化学储能技术。然而,传统的成型技术在传热传质以及孔隙结构的机械稳定性方面存在不足,限制了钙循环技术的推广应用。本研究创新性地提出了一种多级孔隙成型策略,通过发泡技术和模板牺牲法的结合,以及黏合剂聚乙烯吡咯烷酮的引入,成功制备了具有多级孔道结构、良好循环稳定性和较强力学性能的CaO基储热模块。实验结果表明,该储热模块具有从60纳米到1.2毫米级的大跨度多孔结构,并实现了材料与结构的一体化设计,其形成的自支撑结构避免了引入惰性支撑体带来的储能密度降低问题。经过100次循环稳定性与抗压强度测试,储热模块保持了结构的完整性,储能密度达到1094 kJ/kg,抗压强度达到0.31 MPa。并且本工作提出的储热模块合成策略工艺流程简洁,避免了繁琐的步骤和对高成本设备的依赖,适应工业化大规模生产的需求。本研究为钙循环技术在热化学储能领域的应用提供了新的视角和解决方案,有望推动钙循环技术的进一步发展和商业化进程。

关键词: 热化学储热, CaO, 模块化成型, 多级孔道结构

Abstract:

Calcium looping technology is increasingly recognized as a promising thermal chemical energy storage technology solution due to its high thermal storage density, cost-effective raw materials, and eco-friendliness. However, conventional modeling methods have limitations in terms of heat and mass transfer and the mechanical stability of porous structures. These limitations hinder the widespread adoption of calcium looping technology. This study innovatively introduces a hierarchically porous structure modeling approach to successfully develop a CaO-based thermal energy storage module with a hierarchically porous structure, excellent cycling stability, and robust mechanical characteristics by combining foaming technology and a template sacrifice method, as well as the incorporation of polyvinyl pyrrolidone as a binder. The experimental results indicate that the thermal energy storage module exhibits a large-span porous structure ranging from 60 nm to 1.2 mm, effectively integrating the material and structural design. The self-supporting structure eliminates the problem of reduced energy storage density caused by the introduction of inert support materials. After 100 cycles of stability and compressive strength tests, the thermal energy storage module maintained its structural integrity with an energy storage density of 1094 kJ/kg and compressive strength of 0.31 MPa. Furthermore, the synthesis strategy of the proposed thermal energy storage module is simple and efficient, avoiding complex procedures and reliance on expensive equipment, making it suitable for large-scale industrial production. This study offers novel insights and solutions for using calcium looping technology in the field of thermal chemical energy storage, with the potential to advance its development and commercialization.

Key words: thermochemical heat storage, calcium oxide, modular molding, hierarchically porous structure

中图分类号: