1 |
UCHINO T, FUSHIMI C. Fluidized bed reactor for thermochemical heat storage using Ca(OH)2/CaO to absorb the fluctuations of electric power supplied by variable renewable energy sources: A dynamic model[J]. Chemical Engineering Journal, 2021, 419: doi: 10.1016/j.cej.2021.129571.
|
2 |
HOLTTINEN H. Impact of hourly wind power variations on the system operation in the Nordic countries[J]. Wind Energy, 2005, 8(2): 197-218.
|
3 |
XIAO S N, PRADITIA T, OLADYSHKIN S, et al. Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116456.
|
4 |
ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
|
5 |
KHAN M M A, IBRAHIM N I, MAHBUBUL I M, et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review[J]. Solar Energy, 2018, 166: 334-350.
|
6 |
CHEN X Y, ZHANG Z, QI C G, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815.
|
7 |
DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): doi: 10.1126/science.aas9793.
|
8 |
SCHAUBE F, KOCH L, WÖRNER A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20.
|
9 |
ANGERER M, BECKER M, HÄRZSCHEL S, et al. Design of a MW-scale thermo-chemical energy storage reactor[J]. Energy Reports, 2018, 4: 507-519.
|
10 |
SEITZ G, MOHAMMADI F, CLASS H. Thermochemical heat storage in a lab-scale indirectly operated CaO/Ca(OH)2 reactor—numerical modeling and model validation through inverse parameter estimation[J]. Applied Sciences, 2021, 11(2): 682.
|
11 |
PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610.
|
12 |
CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816.
|
13 |
ERVIN G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61.
|
14 |
CRIADO Y A, ALONSO M, ABANADES J C. Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12594-12601.
|
15 |
SAKELLARIOU K G, KARAGIANNAKISY G, CRIADO Y A. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122: 215-230.
|
16 |
ÁLVAREZ CRIADO Y, ALONSO M, ABANADES J C. Composite material for thermochemical energy storage using CaO/Ca(OH)2[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9314-9327.
|
17 |
CRIADO Y A. Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage[J]. Solar Energy, 2016, 135: 800-809.
|
18 |
KARIYA J, RYU J, KATO Y. Development of thermal storage material using vermiculite and calcium hydroxide[J]. Applied Thermal Engineering, 2016, 94: 186-192.
|
19 |
YAN J, ZHAO C Y. First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117: 293-300.
|
20 |
YAN J, ZHAO C Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138: 86-92.
|
21 |
AFFLERBACH S, KAPPES M, GIPPERICH A, et al. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions[J]. Solar Energy, 2017, 148: 1-11.
|
22 |
ROßKOPF C, HAAS M, FAIK A, et al. Improving powder bed properties for thermochemical storage by adding nanoparticles[J]. Energy Conversion and Management, 2014, 86: 93-98.
|
23 |
ROßKOPF C, AFFLERBACH S, SCHMIDT M, et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97: 94-102.
|
24 |
PAN Z H. Gas-solid thermochemical heat storage reactors for high-temperature applications[J]. Energy, 2017, 130: 155-173.
|
25 |
SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results[J]. Chemical Engineering Research and Design, 2013, 91(5): 856-864.
|
26 |
SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559.
|
27 |
SCHMIDT M, GUTIERREZ A, LINDER M. Thermochemical energy storage with CaO/Ca(OH)2-Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188: 672-681.
|
28 |
YAN J, ZHAO C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284.
|
29 |
AZPIAZU M N, MORQUILLAS J M, VAZQUEZ A. Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle[J]. Applied Thermal Engineering, 2003, 23(6): 733-741.
|
30 |
SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873.
|
31 |
PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107: 605-616.
|
32 |
CRIADO Y A, ALONSO M, ABANADES J C, et al. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J]. Applied Thermal Engineering, 2014, 73(1): 1087-1094.
|
33 |
CRIADO Y A, HUILLE A, ROUGÉ S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205.
|
34 |
PRASAD J S, MUTHUKUMAR P, DESAI F, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: doi:10.1016/j.apenergy. 2019.113733.
|
35 |
CHEN X Y, JIN X G, ZHANG Z H, et al. Experimental investigation of CaCO3/CaO in a spiral coil reactor for thermochemical energy storage[J]. Chemical Engineering Journal, 2022, 428: 131971.
|
36 |
SCHAUBE F, WÖRNER A, TAMME R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of Solar Energy Engineering, 2011, 133(3): doi: 10.1115/1.4004245.
|
37 |
金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001.
|
|
JIN Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001.
|
38 |
HYLAND R, WEXLER A. Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa[J]. ASHRAE Transactions, 1983, 89: 520-535.
|
49 |
RANJHA Q, OZTEKIN A. Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage[J]. Renewable Energy, 2017, 111: 825-835.
|
40 |
WANG M Y, CHEN L, HE P, et al. Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors[J]. Energy, 2019, 181: 417-428.
|
41 |
YAN J, ZHAO C Y, PAN Z H. The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems[J]. Energy, 2017, 124: 114-123.
|