1 |
代宇涵,刘春,周朋,等. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774.
|
|
DAI Y H, LIU C, ZHOU P, et al. Application and research progress of energy storage technology in power systems under the dual carbon background[J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774.
|
2 |
WANG B Z, YU X L, CHANG J W, et al. Techno-economic analysis and optimization of a novel hybrid solar-wind-bioethanol hydrogen production system via membrane reactor[J], Energy Conversion and Management, 2022, 252: 115088.
|
3 |
钱文翰,刘培,薛亚丽,等.储能与燃气轮机联合调频的经济性分析[J].动力工程学报,2023, 43(5): 543-549.
|
|
QIAN W H, LIU P, XUE Y L, et al. Economic analysis of coordinated frequency regulation for energy storage and gas turbine system[J]. Journal of Chinese society of power engineering, 2023, 43(5): 543-549.
|
4 |
GRAUBERGER A, YOUNG D, BANDHAUER T. Experimental validation of an organic rankine-vapor compression cooling cycle using low GWP refrigerant R1234ze(E)[J]. Applied Energy, 2022, 307:118242.
|
5 |
MAHMOUD M, RAMADAN M, OLABI A G, et al. A review of mechanical energy storage systems combined with wind and solar applications[J]. Energy Conversion and Management, 2020, 210: 112670.
|
6 |
孙健, 陶建龙, 胡芸蓉, 等. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976.
|
|
SUN J, TAO J L, HU Y R, et al. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976.
|
7 |
安旭刚,何青,张千旭. 热泵储电系统多物理域建模与动态仿真研究[J]. 动力工程学报, 2024, 44(10): 1592-1599.
|
|
AN X G, HE Q, ZHANG Q X. Research on multi-physical domain modeling and dynamic simulation of pumped thermal electricity storage system[J]. Journal of Chinese society of power engineering, 2024, 44(10): 1592-1599.
|
8 |
BENATO A, STOPPATO A. Pumped Thermal Electricity Storage: A technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315.
|
9 |
STEINMANN W D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69:543-552.
|
10 |
张谨奕,王含,白宁,等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(8): 43-49.
|
|
ZHANG J Y, WANG H, BAI N, et al. Thermodynamic analysis for heat pump electricity storage system[J]. Thermal Power Generation, 2020, 49(8): 43-49.
|
11 |
LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot Battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478.
|
12 |
章颢缤, 周宇, 刘琰, 等. 超临界二氧化碳-高温热泵联合储能发电系统设计及分析[J]. 热力发电, 2024, 53(4): 53-62.
|
|
ZHANG H B, ZHOU Y, LIU Y, et al. Design and analysis of a supercritical carbon dioxide and high-temperature heat pump combined energy storage and power generation system[J]. Thermal Power Generation, 2024, 53(4): 53-62.
|
13 |
王新东, 上官方钦, 刑奕, 等. "双碳"目标下钢铁企业低碳发展的技术路径[J]. 工程科学学报, 2023, 45(5): 853-862.
|
|
WANG X D, SHANGGUAN F Q, XING Y, et al. Research on the low-carbon development technology route of iron and steel enterprises under the "double carbon" target[J]. Chinese Journal of Engineering, 2023, 45(5): 853-862.
|
14 |
ZHANG L, NA H M, YUAN Y X, et al. Integrated optimization for utilizing iron and steel industry's waste heat with urban heating based on exergy analysis[J]. Energy Conversion and Management, 2023, 295: 117593.
|
15 |
TIAN W B, XI H. Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles[J]. Energy Conversion and Management, 2022, 259: 115581.
|
16 |
ZHANG Y Y, XU L, LI J, et al. Technical and economic evaluation, comparison and optimization of a Carnot battery with two different layouts[J]. Journal of Energy Storage, 2022, 55: 105583.
|
17 |
BELLOS E, TZIVANIDIS C, SAID Z. Investigation and optimization of a solar-assisted pumped thermal energy storage system with flat plate collectors[J]. Energy Conversion and Management, 2021, 237: 114137.
|
18 |
FAN R X, XI H. Energy, exergy, economic (3E) analysis, optimization and comparison of different Carnot battery systems for energy storage[J]. Energy Conversion and Management, 2022, 252: 115037.
|
19 |
STEGER D, REGENSBURGER C, EPPINGER B, et al. Design aspects of a reversible heat pump - Organic rankine cycle pilot plant for energy storage[J]. Energy, 2020, 208: 118216.
|
20 |
DUMONT O, LEMORT V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963.
|
21 |
FRATE G F, ANTONELLI M, DESIDERI U. A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration[J]. Applied Thermal Engineering, 2017, 121: 1051- 1058.
|
22 |
WANG Z, XIA R, JIANG Y M, et al. Evaluation and optimization of an engine waste heat assisted Carnot battery system for ocean-going vessels during harbor stays[J]. Journal of Energy Storage, 2023, 73:108866.
|
23 |
ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234.
|
24 |
EPPINGER B, STEGER D, REGENSBURGER C, et al. Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant[J]. Applied Energy, 2021, 288: 116650.
|
25 |
PING X, YANG F B, ZHANG H G, et al. Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles[J]. Energy, 2023, 265: 126311.
|
26 |
FRATE G F, FERRARI L, DESIDERI U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage[J]. Energy Conversion and Management, 2020, 208: 112530.
|