储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1900-1909.doi: 10.19799/j.cnki.2095-4239.2024.1132
收稿日期:
2024-12-02
修回日期:
2025-01-23
出版日期:
2025-05-28
发布日期:
2025-05-21
通讯作者:
桂凯旋,闫文其
E-mail:15551672971@163.com;guikx@ahpu.edu.cn;yanwq@ahpu.edu.cn
作者简介:
冷杨(1998—),男,硕士研究生,主要从事锌离子电池隔膜/电解液开发,E-mail:15551672971@163.com。
基金资助:
Yang LENG(), Shuo HUANG, Kaixuan GUI(
), Wenqi YAN(
), Qi LIU
Received:
2024-12-02
Revised:
2025-01-23
Online:
2025-05-28
Published:
2025-05-21
Contact:
Kaixuan GUI, Wenqi YAN
E-mail:15551672971@163.com;guikx@ahpu.edu.cn;yanwq@ahpu.edu.cn
摘要:
水系锌离子电池(AZIBs)因其低成本、无毒性及高理论容量等优势,被视为大规模和长期储能领域的理想之选。然而,锌负极不可控地枝晶生长、表面腐蚀和析氢反应等问题,严重限制了AZIBs的实际应用。本工作提出了一种通过聚阴离子共价有机骨架(COFs)纳米片涂覆PP隔膜制备复合隔膜设计,旨在稳定锌负极。所制备的COFs材料具有独特的纳米孔径和丰富的阴离子基团,能够有效筛选离子,抑制SO42-的迁移,并均匀化Zn2+通量,诱导Zn2+在(002)晶面的择优取向,从而实现了Zn2+的均匀沉积。因此,使用复合隔膜可实现高锌离子的迁移数(0.68)和较高的电导率(13.8 mS/cm)。基于该隔膜组装的对称电池在1 mA /cm2、1 mAh/cm2条件下,展现出超过600 h的循环稳定性,表现出高度可逆的电镀/剥离行为。此外,使用NaV3O8·1.5H2O作为正极材料的全电池,表现出高的初始容量(261.5 mAh/g)且可稳定循环超过900圈。该研究为水系电池的隔膜设计提供了新思路,为高容量、无枝晶和规模化应用的水系锌离子电池的实现奠定了基础。
中图分类号:
冷杨, 黄硕, 桂凯旋, 闫文其, 刘琪. 聚阴离子COFs基复合膜稳定水系锌离子电池负极的研究[J]. 储能科学与技术, 2025, 14(5): 1900-1909.
Yang LENG, Shuo HUANG, Kaixuan GUI, Wenqi YAN, Qi LIU. Study on polyanionic COFs-based composite separators for stabilizing aqueous zinc-ion battery anodes[J]. Energy Storage Science and Technology, 2025, 14(5): 1900-1909.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
2 | YI Z H, CHEN G Y, HOU F, et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries[J]. Advanced Energy Materials, 2021, 11(1): 2003065. DOI: 10.1002/aenm.202003065. |
3 | 方靖, 杨续来, 戴涛, 等. 锂离子电池硅负极用聚合物黏结剂研究进展[J]. 储能科学与技术, 2024, 13(11): 3811-3825. DOI: 10.19799/j.cnki.2095-4239.2024.0467. |
FANG J, YANG X L, DAI T, et al. Advances in polymer binders for silicon anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3811-3825. DOI: 10.19799/j.cnki.2095-4239.2024.0467. | |
4 | 岳金明, 刘媛丽, 陈一霞, 等. GC-MS检测锂离子电池电解液分离条件的研究[J/OL]. 储能科学与技术, 2024: 1-9. (2024-12-06). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2024.1068. |
YUE J M, LIU Y L, CHEN Y X, et al. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection[J/OL]. Energy Storage Science and Technology, 2024: 1-9. (2024-12-06). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2024.1068. | |
5 | WANG T T, LI C P, XIE X S, et al. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020, 14(12): 16321-16347. DOI: 10.1021/acsnano.0c07041. |
6 | SHIN J, LEE J M, PARK Y, et al. Aqueous zinc ion batteries: Focus on zinc metal anodes[J]. Chemical Science, 2020, 11(8): 2028-2044. DOI: 10.1039/D0SC00022A. |
7 | LI Q, ZHAO Y W, MO F N, et al. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries[J]. EcoMat, 2020, 2(3): e12035. DOI: 10.1002/eom2.12035. |
8 | LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. DOI: 10.1016/j.nanoen. 2019.05.059. |
9 | BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. DOI: 10.1016/j.joule.2020.03.002. |
10 | TANG J K, ZHU C Y, JIANG T W, et al. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions[J]. Journal of Materials Chemistry A, 2020, 8(36): 18677-18686. DOI: 10.1039/D0TA07068H. |
11 | ZHOU M, CHEN Y, FANG G Z, et al. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 45: 618-646. DOI: 10.1016/j.ensm.2021.12.011. |
12 | CAO P H, ZHOU X Y, WEI A R, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(20): 2100398. DOI: 10.1002/adfm.202100398. |
13 | MENG Q, BAI Q X, ZHAO R Y, et al. Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra-stable Zn metal anode[J]. Advanced Energy Materials, 2023, 13(44): 2302828. DOI: 10.1002/aenm.202302828. |
14 | WANG G, CHEN C, CHEN Y H, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode[J]. Angewandte Chemie International Edition, 2020, 59(5): 2055-2060. DOI: 10.1002/anie.201913351. |
15 | AN Y L, TIAN Y, LIU C K, et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries[J]. ACS Nano, 2021, 15(9): 15259-15273. DOI: 10.1021/acsnano.1c05934. |
16 | CHEN Z, KIM G T, KIM J K, et al. Highly stable quasi-solid-state lithium metal batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer[J]. Advanced Energy Materials, 2021, 11(30): 2101339. DOI: 10.1002/aenm.202101339. |
17 | PARK S H, BYEON S Y, PARK J H, et al. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes[J]. ACS Energy Letters, 2021, 6(9): 3078-3085. DOI: 10.1021/acsenergylett.1c01521. |
18 | QIN R Z, WANG Y T, YAO L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries[J]. Nano Energy, 2022, 98: 107333. DOI: 10.1016/j.nanoen.2022.107333. |
19 | LI B, ZHANG X T, WANG T T, et al. Interfacial engineering strategy for high-performance Zn metal anodes[J]. Nano-Micro Letters, 2021, 14(1): 6. DOI: 10.1007/s40820-021-00764-7. |
20 | XU K, ZHENG X H, LUO R H, et al. A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries[J]. Materials Today Energy, 2023, 34: 101284. DOI: 10.1016/j.mtener.2023.101284. |
21 | CAO J, ZHANG D D, GU C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode[J]. Nano Energy, 2021, 89: 106322. DOI: 10.1016/j.nanoen.2021.106322. |
22 | LI Y, PENG X Y, LI X, et al. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage[J]. Advanced Materials, 2023, 35(18): 2300019. DOI: 10.1002/adma.202300019. |
23 | ZHOU W J, CHEN M F, TIAN Q H, et al. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries[J]. Energy Storage Materials, 2022, 44: 57-65. DOI: 10.1016/j.ensm.2021.10.002. |
24 | LIANG Y C, MA D T, ZHAO N, et al. Novel concept of separator design: Efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes[J]. Advanced Functional Materials, 2022, 32(25): 2112936. DOI: 10.1002/adfm.202112936. |
25 | XU S J, XU R G, YU T, et al. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries[J]. Energy & Environmental Science, 2022, 15(8): 3379-3387. DOI: 10.1039/D2EE01053D. |
26 | MA R, CAO L Y, ZHUO J T, et al. Designed redox-electrolyte strategy boosted with electrode engineering for high-performance Ti3C2T MXene-based supercapacitors[J]. Advanced Energy Materials, 2023, 13(34): 2301219. DOI: 10.1002/aenm. 202301219. |
27 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. DOI: 10.1038/s41565-023-01341-2. |
28 | RUAN P C, LIANG S Q, LU B G, et al. Design strategies for high-energy-density aqueous zinc batteries[J]. Angewandte Chemie International Edition, 2022, 61(17): e202200598. DOI: 10.1002/anie.202200598. |
29 | ZHANG X Y, SHANG C Z, WANG C Y, et al. Preferred crystallographic orientation via solution bathing for high-performance inverted perovskite photovoltaics[J]. Advanced Functional Materials, 2024, 34(46): 2407732. DOI: 10.1002/adfm. 202407732. |
30 | YANG D, WU X Y, HE L, et al. Physicochemical synergistic separator coating induces uniform and rapid deposition of Li and Zn ions[J]. Nano Letters, 2023, 23(1): 336-343. DOI: 10.1021/acs.nanolett.2c04613. |
31 | CHEN J Z, CHEN M F, MA H, et al. Advances and perspectives on separators of aqueous zinc ion batteries[J]. Energy Reviews, 2022, 1(1): 100005. DOI: 10.1016/j.enrev.2022.100005. |
32 | HUANG T, WANG S L, WU J Y, et al. Triazine and hydroxyl covalent organic framework modified separator for Zn-ion fast and selective transport and dendrite-free deposition in zinc-iodine battery[J]. Journal of Power Sources, 2024, 608: 234658. DOI: 10.1016/j.jpowsour.2024.234658. |
33 | LI B, RUAN P C, XU X Y, et al. Covalent organic framework with 3D ordered channel and multi-functional groups endows Zn anode with superior stability[J]. Nano-Micro Letters, 2024, 16(1): 76. DOI: 10.1007/s40820-023-01278-0. |
34 | SONG Y, RUAN P C, MAO C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nano-Micro Letters, 2022, 14(1): 218. DOI: 10.1007/s40820-022-00960-z. |
35 | DU F K, WU F F, MA L, et al. A review on advanced optimization strategies of separators for aqueous zinc-ion batteries[J]. Functional Materials Letters, 2023, 16(8): 2340017. DOI: 10.1142/S1793604723400179. |
36 | DING L, ZHANG D X, ZHANG S H, et al. Microporous structure and mechanical behavior of separators used for lithium-ion battery[J]. Journal of Polymer Research, 2021, 28(3): 98. DOI: 10.1007/s10965-020-02358-0. |
37 | LI C W, WANG W H, LIU S Z, et al. Adjusting zinc deposition behaviors by a modified separator to acquire zinc anodes for aqueous rechargeable zinc-ion batteries[J]. Dalton Transactions, 2023, 52(36): 12869-12877. DOI: 10.1039/D3DT02212A. |
38 | XU S, SUN Z H, WEI D H, et al. Polypyrrole functionalized cellulose/polypropylene composite membrane with zinc inducing and dendrite resistance for robust zinc-ion batteries[J]. Journal of Membrane Science, 2024, 712: 123230. DOI: 10.1016/j.memsci. 2024.123230. |
39 | SHI B B, PANG X, LI S N, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity[J]. Nature Communications, 2022, 13: 6666. DOI: 10.1038/s41467-022-33868-8. |
40 | PENG H L, WANG C T, WANG D D, et al. Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(34): e202308068. DOI: 10.1002/anie.202308068. |
41 | WANG X Y, SHI B B, YANG H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity[J]. Nature Communications, 2022, 13: 1020. DOI: 10.1038/s41467-022-28643-8. |
42 | HONG L, WU X M, WANG L Y, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels[J]. ACS Nano, 2022, 16(4): 6906-6915. DOI: 10.1021/acsnano.2c02370. |
43 | PU X C, JIANG B Z, WANG X L, et al. High-performance aqueous zinc-ion batteries realized by MOF materials[J]. Nano-Micro Letters, 2020, 12(1): 152. DOI: 10.1007/s40820-020-00487-1. |
44 | LI C C, QIN B S, ZHANG Y F, et al. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries[J]. Advanced Energy Materials, 2019, 9(10): 1803422. DOI: 10.1002/aenm.201803422. |
45 | GE Z F, ZHANG H, TIAN J Z, et al. Multifunctional fullerene protective layer for dendrite-free Zn metal anode[J]. Chemical Engineering Journal, 2023, 466: 143054. DOI: 10.1016/j.cej. 2023.143054. |
[1] | 黄德权, 韦韬, 殷广达, 闻港, 侯爵, 梁毅. 硅氧烷溶剂应用于高电压锂金属电池及电化学性能[J]. 储能科学与技术, 2025, 14(4): 1340-1351. |
[2] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. |
[3] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[4] | 刘博宇, 王腾飞, 庞青, 陈凯宇, 望红玉. Mg-Cr共掺LiNi0.5Mn1.5O4 正极材料的制备及电化学性能[J]. 储能科学与技术, 2025, 14(3): 1097-1106. |
[5] | 梁毅, 韦韬, 殷广达, 黄德权. 亲锂Ag-3D-Cu电极的设计及电化学性质[J]. 储能科学与技术, 2025, 14(2): 515-524. |
[6] | 张李帅, 张艺菲, 马伊扬, 赵思博, 刘洪全, 石盛庭, 钟艳君. 铁基普鲁士蓝类似物钠离子电池正极材料研究进展[J]. 储能科学与技术, 2025, 14(2): 525-543. |
[7] | 江训昌, 喻科霖, 杨大祥, 廖敏会, 周洋. 原位聚合制备PDOL基固态电解质及其在锂金属电池中的应用[J]. 储能科学与技术, 2025, 14(1): 1-12. |
[8] | 鲁杰, 杜娴, 师玉璞, 李卓, 曹娜, 杜珣涛, 杜慧玲. 高稳定水系锌离子电池PANI包覆钒化合物阴极材料[J]. 储能科学与技术, 2025, 14(1): 42-53. |
[9] | 何忆南, 张锴, 周俊武, 王欣杨, 郑百林. 外部载荷对硅电极锂电池循环性能的影响[J]. 储能科学与技术, 2024, 13(8): 2559-2569. |
[10] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
[11] | 李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. |
[12] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[13] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[14] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
[15] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||