储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 42-53.doi: 10.19799/j.cnki.2095-4239.2024.0621
鲁杰1(), 杜娴2, 师玉璞2, 李卓3, 曹娜3, 杜珣涛4, 杜慧玲2(
)
收稿日期:
2024-06-21
修回日期:
2024-07-24
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
杜慧玲
E-mail:18105016001@stu.xust.edu.cn;hldu@xust.edu.cn
作者简介:
鲁杰(1991—),男,博士研究生,研究方向为水系锌离子电池正极,E-mail:18105016001@stu.xust.edu.cn;
基金资助:
Jie LU1(), Xian DU2, Yupu SHI2, Zhuo LI3, Na CAO3, Xuntao DU4, Huiling DU2(
)
Received:
2024-06-21
Revised:
2024-07-24
Online:
2025-01-28
Published:
2025-02-25
Contact:
Huiling DU
E-mail:18105016001@stu.xust.edu.cn;hldu@xust.edu.cn
摘要:
具有多种晶体结构的钒化合物具有较高的理论容量,被认为是一种很有前途的水系锌离子电池阴极材料,但由于钒化合物锌离子扩散缓慢,结构稳定性差,限制了其进一步发展。本文通过简单一步水热法设计合成了Mn(VO3)2-NaV8O20异质结纳米带,并通过静电自组装法将聚苯胺(PANI)薄膜包覆在纳米带表面,制备出Mn(VO3)2-NaV8O20@PANI (PMNVO) 复合材料,在两种策略协同作用下,实现了高效离子-电子协同传输,获得了高锌离子传输速率、高储锌性能、晶体结构稳定水系锌离子电池(AZIBs)阴极材料。实验结果表明,两种晶体间的异质结界面增强了锌的电荷转移动力学,改善了锌的扩散动力学,纳米带形貌提供了更多的反应活性位点。此外,与PANI复合,材料导电性增强,晶体结构更稳定,使得PMNVO具有优异的储锌性能及电化学动力。具体测试结果为,当PMNVO的电流密度为0.2 A/g时,比容量为417.6 mAh/g;在1 A/g下,初始比容量为360.3 mAh/g,200次循环后的容量保持率为91.0%;在8 A/g下,初始比容量为189.3 mAh/g,3000次循环后的容量保持率为99.3%,倍率性能优异且循环寿命较长;表观扩散系数为4.97×10-11~1.87×10-10cm2/s,电化学动力学良好。本文为AZIBs阴极材料的设计提供了一个范例。
中图分类号:
鲁杰, 杜娴, 师玉璞, 李卓, 曹娜, 杜珣涛, 杜慧玲. 高稳定水系锌离子电池PANI包覆钒化合物阴极材料[J]. 储能科学与技术, 2025, 14(1): 42-53.
Jie LU, Xian DU, Yupu SHI, Zhuo LI, Na CAO, Xuntao DU, Huiling DU. PANI-coated vanadium compound as high-stable aqueous zinc-ion batteries cathode material[J]. Energy Storage Science and Technology, 2025, 14(1): 42-53.
表2
AZIBs中类似的正极材料的电化学性能"
Materials | Current collector | Electrolyte | Current density/(A/g) /Specific capacity/(mAh/g) | Cycle numbers/ Capacity retention/% | References |
---|---|---|---|---|---|
Mn(VO3)2-NaV8O20@PANI | stainless steel mesh | 3 mol/L ZnSO4 | 0.2/417.6 1/360.3 | 1A/g 200/91.0 % 8A/g 3000/99.3 % | This work |
VOH@PANI | Ti sheets | 3 mol/L Zn(CF3SO3)2 | 1/228 | 2A/g 2000/98 % | [ |
PVM | Ti foil | 3 mol/L Zn(CF3SO3)2 | 0.2/265 | 10A/g 2000/68.3 % | [ |
KPVO | Ti foil | 3 mol/L Zn(CF3SO3)2 | 0.2/400 | 5A/g 3000/89.5 % | [ |
CoVO@PANI60 | Ti foil | 2 mol/L Zn(CF3SO3)2 | 0.2/407 | 10A/g 1500/90.4 % | [ |
PANI-VOH | Ti sheets | 3 mol/L Zn(CF3SO3)2 | 0.1/363 | 5A/g 2000/52.4 % | [ |
1 | DING Y, ZHANG L L, WANG X, et al. Vanadium-based cathodes for aqueous zinc ion batteries: Structure, mechanism and prospects[J]. Chinese Chemical Letters, 2023, 34(2): 107399. DOI: 10.1016/j.cclet.2022.03.122. |
2 | LIU M Q, WANG P, ZHANG W, et al. Strategies for pH regulation in aqueous zinc ion batteries[J]. Energy Storage Materials, 2024, 67: 103248. DOI: 10.1016/j.ensm.2024.103248. |
3 | LI X Y, WANG L, FU Y H, et al. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions[J]. Nano Energy, 2023, 116: 108858. DOI: 10.1016/j.nanoen.2023.108858. |
4 | YAN H B, LI S M, ZHONG J Y, et al. An electrochemical perspective of aqueous zinc metal anode[J]. Nano-Micro Letters, 2023, 16(1): 15. DOI: 10.1007/s40820-023-01227-x. |
5 | LI B, ZENG Y, ZHANG W S, et al. Separator designs for aqueous zinc-ion batteries[J]. Science Bulletin, 2024, 69(5): 688-703. DOI: 10.1016/j.scib.2024.01.011. |
6 | 李万瑞, 李文俊, 王小青, 等. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. DOI: 10.19799/j.cnki.2095-4239.2023.0854. |
LI W R, LI W J, WANG X Q, et al. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. DOI: 10.19799/j.cnki.2095-4239. 2023.0854. | |
7 | 周江, 单路通, 唐博雅, 等. 水系可充锌电池的发展及挑战[J]. 科学通报, 2020, 65(32): 3562-3596. DOI: 10.1360/TB-2020-0352. |
ZHOU J, SHAN L T, TANG B Y, et al. Development and challenges of aqueous rechargeable zinc batteries[J]. Chinese Science Bulletin, 2020, 65(32): 3562-3596. DOI: 10.1360/TB-2020-0352. | |
8 | JAVED M S, MATEEN A, ALI S, et al. The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects[J]. Small, 2022, 18(26): e2201989. DOI: 10.1002/smll.202201989. |
9 | HAO J N, ZHANG S J, WU H, et al. Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation[J]. Chemical Society Reviews, 2024, 53(9): 4312-4332. DOI: 10.1039/d3cs00771e. |
10 | LI Z, DU H L, LU J, et al. Self-assembly of antimony sulfide nanowires on three-dimensional reduced GO with superior electrochemical lithium storage performances[J]. Chemical Physics Letters, 2021, 771: 138529. DOI: 10.1016/j.cplett. 2021. 138529. |
11 | ZHANG Y W, DU H L, LU J, et al. Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries[J]. Fuel, 2023, 334: 126683. DOI: 10.1016/j.fuel.2022.126683. |
12 | WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. DOI: 10.1016/j.ensm.2019.07.045. |
13 | PARKER J F, KO J S, ROLISON D R, et al. Translating materials-level performance into device-relevant metrics for zinc-based batteries[J]. Joule, 2018, 2(12): 2519-2527. DOI: 10.1016/j.joule.2018.11.007. |
14 | 唐梓巍, 师玉璞, 张雨禅, 等. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812. |
TANG Z W, SHI Y P, ZHANG Y S, et al. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812. | |
15 | YANG L, ZHU Y J, ZENG F L, et al. Synchronously promoting the electron and ion transport in high-loading Mn2.5V10O24∙5.9H2O cathodes for practical aqueous zinc-ion batteries[J]. Energy Storage Materials, 2024, 65: 103162. DOI: 10.1016/j.ensm. 2023. 103162. |
16 | ZHANG Y B, LI Z H, ZHAO B, et al. Ce ions and polyaniline co-intercalation into MOF-derived porous V2O5 nanosheets with a synergistic energy storage mechanism for high-capacity and super-stable aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(3): 1725-1735. DOI: 10.1039/d3ta06554e. |
17 | HAN Z Y, GAO R H, WANG T S, et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics[J]. Nature Catalysis, 2023, 6: 1073-1086. DOI: 10.1038/s41929-023-01041-z. |
18 | 刘起辉, 傅焰鹏, 罗京, 等. 低温水浴法制备钾离子预嵌层状MnO2及其储锌性能[J]. 储能科学与技术, 2023, 12(3): 768-776. DOI: 10.19799/j.cnki.2095-4239.2022.0612. |
LIU Q H, FU Y P, LUO J, et al. Low-temperature solution synthesis of K+ preintercalated delta-MnO2 for high performance Zn-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 768-776. DOI: 10.19799/j.cnki.2095-4239.2022.0612. | |
19 | HU Y X, DU H L, LU J, et al. Interface synergistic stabilization of zinc anodes via polyacrylic acid doped polyvinyl alcohol ultra-thin coating[J]. Journal of Energy Storage, 2024, 87: 111444. DOI: 10.1016/j.est.2024.111444. |
20 | LIU Y X, WANG T D, SUN Y N, et al. Fast and efficient in situ construction of low crystalline PEDOT-intercalated V2O5 nanosheets for high-performance zinc-ion battery[J]. Chemical Engineering Journal, 2024, 484: 149501. DOI: 10.1016/j.cej. 2024.149501. |
21 | ZHANG X F, ZHANG L, JIA X Y, et al. Design strategies for aqueous zinc metal batteries with high zinc utilization: From metal anodes to anode-free structures[J]. Nano-Micro Letters, 2024, 16(1): 75. DOI: 10.1007/s40820-023-01304-1. |
22 | LUO D, ZHU H, XIA Y, et al. A Li-rich layered oxide cathode with negligible voltage decay[J]. Nature Energy, 2023, 8: 1078-1087. DOI: 10.1038/s41560-023-01289-6. |
23 | LU J, DU H L, LIU H, et al. In situ constructing heterogeneous Mn(VO3)2/NaVO3 nanoribbons as high-performance cathodes for aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2024, 975: 172934. DOI: 10.1016/j.jallcom.2023.172934. |
24 | FAN L L, LI Z H, KANG W M, et al. Highly stable aqueous rechargeable Zn-ion battery: The synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode[J]. Journal of Energy Chemistry, 2021, 55: 25-33. DOI: 10.1016/j.jechem.2020.06.075. |
25 | RUAN P C, LIANG S Q, LU B G, et al. Design strategies for high-energy-density aqueous zinc batteries[J]. Angewandte Chemie (International Ed), 2022, 61(17): e202200598. DOI: 10.1002/anie. 202200598. |
26 | GUO Z H, WANG J X, YU P, et al. Toward full utilization and stable cycling of polyaniline cathode for nonaqueous rechargeable batteries[J]. Advanced Energy Materials, 2023, 13(38): 2301520. DOI: 10.1002/aenm.202301520. |
27 | LIU H, JIANG L, CAO B, et al. Van der waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution[J]. ACS Nano, 2022, 16(9): 14539-14548. DOI: 10.1021/acsnano.2c04968. |
28 | HU Y X, DU H L, LU J, et al. Achieving dendrite-free and long cyclic stability of zinc anode via CeO2 doped PEO interface modification[J]. Fuel, 2023, 354: 129417. DOI: 10.1016/j.fuel. 2023.129417. |
29 | ZHONG X Q, KONG Z Z, LIU Q F, et al. Design strategy of high stability vertically aligned RGO@V2O5 heterostructure cathodes for flexible quasi-solid-state aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(50): 58333-58344. DOI: 10.1021/acsami.3c12161. |
30 | CUI S S, ZHANG D, GAN Y. Traditional electrochemical Zn2+ intercalation/extraction mechanism revisited: Unveiling ion-exchange mediated irreversible Zn2+ intercalation for the δ-MnO2 cathode in aqueous Zn ion batteries[J]. Advanced Energy Materials, 2024, 14(7): 2302655. DOI: 10.1002/aenm.202302655. |
31 | LI M, LIU M Z, LU Y Y, et al. A dual active site organic–inorganic poly(O-phenylenediamine)/NH4V3O8 composite cathode material for aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2024, 34(19): 2312789. DOI: 10.1002/adfm.202312789. |
32 | DAI Y H, ZHANG C Y, LI J W, et al. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries[J]. Advanced Materials, 2024, 36(14): 2310645. DOI: 10.1002/adma. 202310645. |
33 | ZHANG T, REN M, HUANG Y H, et al. Negative lattice expansion in an O3-type transition-metal oxide cathode for highly stable sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(8): e202316949. DOI: 10.1002/anie.202316949. |
34 | LIANG J X, HOU Y P, SUN J, et al. Overpotential regulation of vanadium-doped chitosan carbon aerogel cathode promotes heterogeneous electro-Fenton degradation efficiency[J]. Applied Catalysis B: Environmental, 2022, 317: 121794. DOI: 10.1016/j.apcatb.2022.121794. |
35 | TIAN G F, LING D D, ZHANG D H, et al. Reversible NH4+ intercalation/de-intercalation with phosphate promotion effect in tunnel (NH4)0.25WO3[J]. Chemical Engineering Journal, 2024, 482: 149160. DOI: 10.1016/j.cej.2024.149160. |
36 | ZHAO F J, LI J W, CHUTIA A, et al. Highly stable manganese oxide cathode material enabled by Grotthuss topochemistry for aqueous zinc ion batteries[J]. Energy & Environmental Science, 2024, 17(4): 1497-1508. DOI: 10.1039/D3EE04161A. |
37 | PENG Z, FENG Z M, ZHOU X L, et al. Polymer engineering for electrodes of aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2024, 91: 345-369. DOI: 10.1016/j.jechem. 2023. 12.012. |
38 | HUANG L L, LI J H, GAO X Y, et al. Realizing high-performance of quinone-based cathode via multiple active centers for aqueous zinc ion batteries[J]. Journal of Power Sources, 2024, 591: 233896. DOI: 10.1016/j.jpowsour.2023.233896. |
39 | QIU Y, SUN Z H, GUO Z H, et al. Ion-molecule co-confining ammonium vanadate cathode for high-performance aqueous zinc-ion batteries[J]. Small, 2024, 20(22): e2311029. DOI: 10.1002/smll.202311029. |
40 | ZHENG Y, ZHOU T F, ZHANG C F, et al. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2016, 55(10): 3408-3413. DOI: 10.1002/anie.201510978. |
41 | ZHANG B, XU B H, QIN H Z, et al. Highly active and stable Cu9S5-MoS2 heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage[J]. Journal of Materials Science & Technology, 2023, 143: 107-116. DOI: 10.1016/j.jmst.2022.10.011. |
42 | WANG Y, NIU S Y, GONG S S, et al. Fused functional organic material with the alternating conjugation of quinone-pyrazine as cathode for aqueous zinc ion batteries[J]. Small Methods, 2024, 8(7): e2301301. DOI: 10.1002/smtd.202301301. |
43 | LIU S C, ZHU H, ZHANG B H, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance[J]. Advanced Materials, 2020, 32(26): 2001113. DOI: 10.1002/adma.202001113. |
44 | LIANG X W, YANG Y Y, DI W F, et al. Three-dimensional mixed-valence polyoxovanadates@polyaniline architecture towards high-performance rechargeable aqueous zinc-ion batteries cathode[J]. Chemical Engineering Journal, 2024, 495: 153255. DOI: 10.1016/j.cej.2024.153255. |
45 | SUN J J, ZHAO Y F, LIU Y Y, et al. Synthesis of V2O5·nH2O nanobelts@polyaniline core-shell structures with highly efficient Zn2+ storage[J]. Journal of Colloid and Interface Science, 2023, 633: 923-931. DOI: 10.1016/j.jcis.2022.11.153. |
46 | LI X, LI Y, XIE S Y, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes[J]. Chemical Engineering Journal, 2022, 427: 131799. DOI: 10.1016/j.cej.2021.131799. |
47 | DU M, LIU C F, ZHANG F, et al. Tunable layered (Na, Mn)V8O20· nH2O cathode material for high-performance aqueous zinc ion batteries[J]. Advanced Science, 2020, 7(13): 2000083. DOI: 10.1002/advs.202000083. |
48 | ZHU H, MA L, JIANG J, et al. Green synthesis of polypyrrole coated manganesee(II) vanadate nanoflower composite as cathode materials[J]. International Journal of Electrochemical Science, 2020, 15(1): 371-381. DOI: 10.20964/2020.01.17. |
49 | LI Y, LI X, DUAN H, et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 441: 136008. DOI: 10.1016/j.cej.2022.136008. |
50 | ZHANG Y F, XU L, JIANG H M, et al. Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 603: 641-650. DOI: 10.1016/j.jcis.2021.06.141. |
51 | ZENG J, ZHANG Z H, GUO X S, et al. A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures[J]. Journal of Materials Chemistry A, 2019, 7(37): 21079-21084. DOI: 10.1039/C9TA08086D. |
52 | TAN S D, SANG Z Y, YI Z H, et al. Conductive coating, cation-intercalation, and oxygen vacancies co-modified vanadium oxides as high-rate and stable cathodes for aqueous zinc-ion batteries[J]. EcoMat, 2023, 5(4): e12326. DOI: 10.1002/eom2. 12326. |
53 | ZHENG C, JIAN B Q, ZHONG J R, et al. Single-crystalline Mn2V2O7 anodes with high rate and ultra-stable capability for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 934: 168018. DOI: 10.1016/j.jallcom.2022.168018. |
54 | WANG J J, ZHAO X Y, KANG J Z, et al. Li+, Na+ co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance[J]. Journal of Materials Chemistry A, 2022, 10(40): 21531-21539. DOI: 10.1039/D2TA05803K. |
55 | LIU H, DU H L, ZHAO W, et al. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage[J]. Energy Storage Materials, 2021, 40: 490-498. DOI: 10.1016/j.ensm. 2021.05.037. |
56 | LIU A N, WU F, ZHANG Y X, et al. Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery[J]. Nano Research, 2023, 16(7): 9461-9470. DOI: 10.1007/s12274-023-5676-0. |
57 | LUO P, YU G T, ZHANG W W, et al. "Triple-synergistic effect" of K+ and PANI co-intercalation enabling the high-rate capability and stability of V2O5 for aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 659: 267-275. DOI: 10.1016/j.jcis.2023.12.167. |
58 | WANG X D, LU Y, LI R, et al. High-performance aqueous zinc-ion batteries enabled by superlattice intercalation Zn3V2O7-C cathodes[J]. ACS Applied Energy Materials, 2023, 6(4): 2462-2470. DOI: 10.1021/acsaem.2c03787. |
[1] | 杜陈强, 聂周缓, 王慧楠, 张纪伟, 张经纬. TiO2/TiN异质结内建电场的构筑及多硫化锂催化转化性能研究[J]. 储能科学与技术, 2024, 13(8): 2499-2510. |
[2] | 李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. |
[3] | 婷婷, 林其杭, 刘长洋, 卞刘振, 孙超, 齐冀, 彭继华, 安胜利. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767. |
[4] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
[5] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[6] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||