储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 754-767.doi: 10.19799/j.cnki.2095-4239.2022.0638
婷婷1,2(), 林其杭1,2, 刘长洋3, 卞刘振1,2,4(), 孙超1,2, 齐冀1,2, 彭继华1,2,4, 安胜利1,2,3,4()
收稿日期:
2022-10-31
修回日期:
2022-11-18
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
卞刘振,安胜利
E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com
作者简介:
婷婷(1997—),女,硕士研究生,研究方向为锌离子电池, E-mail:borjiginting@163.com;
基金资助:
Ting TING1,2(), Qihang LIN1,2, Changyang LIU3, Liuzhen BIAN1,2,4(), Chao SUN1,2, QI Ji1,2, Jihua PENG1,2,4, Shengli AN1,2,3,4()
Received:
2022-10-31
Revised:
2022-11-18
Online:
2023-03-05
Published:
2023-04-14
Contact:
Liuzhen BIAN, Shengli AN
E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com
摘要:
水系锌离子电池(AZIBs)MnO2正极材料由于具有较高的工作电压和低制造成本等特点而备受关注,MnO2正极固有的导电性差和充放电过程中结构坍塌等问题,导致其比容量较低和循环稳定性较差,严重制约了AZIBs的发展。本文通过调研相关文献,综述了提高MnO2正极材料电导率和循环稳定性的策略,重点介绍了MnO2结构调控、纳米工程、掺杂改性和与高导材料复合等改性策略。通过分析不同晶体结构的MnO2正极材料的电化学性能,建立了MnO2晶体结构与电池比容量之间的构效关系。详细分析了不同的合成手段对MnO2纳米形貌及电池比容量的影响,为不同形貌的MnO2制备提供了指导。同时分析了元素体相掺杂以及高导电碳基材料的添加对MnO2电导率和循环稳定性的影响规律。最后对高性能AZIBs用MnO2正极材料的发展进行了展望,不同的改善策略可以混合使用,并起到协同作用。
中图分类号:
婷婷, 林其杭, 刘长洋, 卞刘振, 孙超, 齐冀, 彭继华, 安胜利. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767.
Ting TING, Qihang LIN, Changyang LIU, Liuzhen BIAN, Chao SUN, QI Ji, Jihua PENG, Shengli AN. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 754-767.
表1
一价/多价金属的标准电位、理论容量、离子半径和成本[7]"
Characteristic | Li | Na | K | Mg | Ca | Zn | Al |
---|---|---|---|---|---|---|---|
Standard Potential(verus SHE)/V | -3.040 | -2.713 | -2.924 | -2.356 | -2.840 | -0.763 | -1.676 |
Specific capacity/(mAh/g) | 3860 | 1166 | 685 | 2206 | 1337 | 820 | 2980 |
Capacity density/(mAh/cm3) | 2061 | 1129 | 610 | 3834 | 2072 | 5855 | 8046 |
Ionic radius/Å | 0.76 | 1.02 | 1.38 | 0.72 | 1.00 | 0.75 | 0.53 |
Cost of metal anode/(USD/t) | 16500 | 3527 | 19842 | 3307 | — | 2614 | 1744 |
Crustal abundance | 17 | 23000 | 15000 | 29000 | 50000 | 79 | 82000 |
表2
AZIBs中掺杂改性后MnO2 材料的结构和电化学性能"
Cathode | Elactroyte | Voltage /V | Capacity | Capacity retention/ Capacity/n cls/y/(mA/g) | Ref. |
---|---|---|---|---|---|
Al-doped α-MnO2 Nanospheres | 0.5 mol/L Na2SO4 | 0~0.6 | 1127 mF/cm2(2 mA/cm2) | — | [ |
Cu-doped β-MnO2 Nanorods | 0.5 mol/L ZnSO4 | 1~1.8 | 202.80 mAh/g | — | [ |
Cu-doped α-MnO2 Nanotubes | 0.5 mol/L ZnSO4 | 1~1.8 | 270.81 mAh/g | — | [ |
Cu-doped δ-MnO2 Nanoflowers | 0.5 mol/L ZnSO4 | 1~1.8 | 205.54 mAh/g | — | [ |
Cu-doped γ-MnO2 Nanostars | 0.5 mol/L ZnSO4 | 1~1.8 | 306.8 mAh/g | — | [ |
Cu-doped ε-MnO2 Nanoflakes | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 0.8~1.8 | 235 mA/g(200 mA/g) | 20/22%/60 cls | [ |
Cu-doped ε-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 493.3 mA/g(100 mA/g) | 367.7/81%/150 cls /500 | [ |
Cu-doped δ-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 363.7 mA/g(500 mA/g) | — | [ |
Bi-doped α-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 175.5 mA/g(100 mA/g) | 114.5/99%/1100 cls /1000 | [ |
Bi-doped α-MnO2 Nanowires | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 325 mA/g(300 mA/g) | 240/91%/2000 cls /1000 | [ |
V-doped α-MnO2 Nanoparticles | 1 mol/L ZnSO4 | 1~1.8 | 266 mA/g(66 mA/g) | 131/50%/100 cls /100 | [ |
Cr-doped α-MnO2 Nanorods | 1 mol/L KOH | -0.3~0.5 | 271 F/g(300 mA/g) | — | [ |
Cr-doped α-MnO2 Nanorods | 2 mol/L ZnSO4 | -1.5~1.5 | 257 mA/g(50 mA/g) | 200/78%/10 cls /50 | [ |
Fe-doped α-MnO2 Nanorods | 2 mol/L KOH | -0.3~0.4 | 620 F/g(1000 mA/g) | — | [ |
Fe-doped α-MnO2@PPy | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 270 mA/g(100 mA/g) | 100/75%/1000 cls /800 | [ |
Ag-doped α-MnO2 Nanorods | 2 mol/L ZnSO4 | 1~1.8 | 240 mA/g(50 mA/g) | — | [ |
Sn-doped α-MnO2 Nanorods | 1 mol/L ZnSO4 | -2~1.25 | 589 mA/g(50 mA/g) | 557/95%/20 cls /50 | [ |
Nb-doped α-MnO2 Nanoparticles | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1~1.9 | 165 mA/g(1000 mA/g) | 100/61%/50 cls /1000 | [ |
Na-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.85 | 266 mA/g(100 mA/g) | 130/80%/2000 cls /2000 | [ |
Co-doped δ-MnO2 Nanorflowers | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 1~1.85 | 250 mA/g(100 mA/g) | 100/63%/5000 cls /2000 | [ |
Co-doped δ-MnO2 Nanorods@N-CC | 2 mol/L ZnSO4+0.07 mol/L MnSO4 | 1~1.8 | 295 mA/g(93.5 mA/g) | 280/100%/600 cls /1200 | [ |
La-doped δ-MnO2 Nanorflorets | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 279 mA/g(100 mA/g) | 175/71%/200 cls /800 | [ |
La-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 227 mA/g(200 mA/g) | 64/65%/200 cls /1600 | [ |
Ca-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 216 mA/g(200 mA/g) | 73/76%/200 cls /1600 | [ |
La-Ca-doped ε-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 297 mA/g(200 mA/g) | 74/76%/200 cls /1600 | [ |
Ce-doped β-MnO2 Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.8 | 260 mA/g(154 mA/g) | 155/46%/400 cls /616 | [ |
表3
AZIBs中与高导材料结合的MnO2 材料的结构和电化学性能"
Cathode | Morphology | Elactroyte | Voltage /V | Capacity /(mA/g) | Capacity retention/ Capacity/n cls/y/(mA/g) | Ref. |
---|---|---|---|---|---|---|
δ -MnO2/C | Nanoflower | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1.0~1.9 | 200(2000 mA/g) | 279.7/92%/300 cls /300 | [ |
β -MnO2@CC | Nanolayer | 3 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.98~1.8 | 326(100 mA/g) | 80%/700 cls/2000 | [ |
α -MnO2/PCSs | Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.9 | 350(100 mA/g) | — | [ |
α -MnO2@ Porous-C | Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.8 | 239(100 mA/g) | 100%/1000 cls/1000 | [ |
ε -MnO2@CFP | Nanoparticles | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 1~1.8 | 290(1 C) | 100%/1000 cls/6.5C | [ |
α -MnO2/a-CNT | Nanorods | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1~1.9 | 400(1000 mA/g) | 98%/500 cls/5000 | [ |
γ -MnO2/Graphene | Nanorods | 2 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.8 | 301(500 mA/g) | 64%/300 cls/20 mA/cm2 | [ |
α -MnO2/Graphene Scroll | Nanowires | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.85 | 382(300 mA/g) | 95%/100 cls/1000 | [ |
α -MnO2/Graphite | Nanospheres | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 0.8~1.8 | 230(100 mA/g) | 80%/1000 cls/1000 | [ |
δ -MnO2/Graphene Oxide | Nanosheets | 1 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.8 | 86(500 mA/g) | 133/100 cls/100 | [ |
1 | SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: A review[J]. Environmental Science and Pollution Research, 2021, 28(13): 15607-15626. |
2 | MCGLADE C, EKINS P. The geographical distribution of fossil fuels unused when limiting global warming to 2 ℃[J]. Nature, 2015, 517(7533): 187-190. |
3 | GÜNEY T. Renewable energy consumption and sustainable development in high-income countries[J]. International Journal of Sustainable Development & World Ecology, 2021, 28(4): 376-385. |
4 | 丛晶, 宋坤, 鲁海威, 等. 新能源电力系统中的储能技术研究综述[J]. 电工电能新技术, 2014, 33(3): 53-59. |
CONG J, SONG K, LU H W, et al. Review of energy storage technology for new energy power system[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3): 53-59. | |
5 | BHATT M D, O'DWYER C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 4799-4844. |
6 | AMINE K, KANNO R, TZENG Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions[J].MRS Bulletin, 2014, 39(5): 395-401. |
7 | SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): doi:10.1002/adfm.201802564. |
8 | ZHANG N, CHEN X Y, YU M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chemical Society Reviews, 2020, 49(13): 4203-4219. |
9 | ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-Manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405. |
10 | PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/Manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.39. |
11 | CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie (International Ed in English), 2019, 58(23): 7823-7828. |
12 | CHEN W, LI G D, PEI A, et al. A Manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy, 2018, 3(5): 428-435. |
13 | MATEOS M, MAKIVIC N, KIM Y S, et al. Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes[J]. Advanced Energy Materials, 2020, 10(23): doi: 10.1002/aenm.202000332. |
14 | LI G Z, HUANG Z X, CHEN J B, et al. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials[J]. Journal of Materials Chemistry A, 2020, 8(4): 1975-1985. |
15 | GUO X, ZHOU J, BAI C L, et al. Zn/MnO2 battery chemistry with dissolution-deposition mechanism[J]. Materials Today Energy, 2020, 16: doi: 10.1016/j.mtener.2020.100396. |
16 | FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing Manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery[J]. Advanced Functional Materials, 2019, 29(15): doi: 10.1002/adfm.201808375.. |
17 | ZHANG T S, TANG Y, GUO S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review[J]. Energy & Environmental Science, 2020, 13(12): 4625-4665. |
18 | ZHONG C, LIU B, DING J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–Manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449. |
19 | CHUAI M Y, YANG J L, WANG M M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185. |
20 | CHAO D L, YE C, XIE F X, et al. Hybrid aqueous batteries: Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density [J]. Advanced Materials, 2020, 32(25): doi: 10.1002/adma.202001894. |
21 | BROUSSE T, TOUPIN M, DUGAS R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2006, 153(12): A2171. |
22 | DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4406-4417. |
23 | WEI C G, XU C J, LI B H, et al. Preparation and characterization of Manganese dioxides with nano-sized tunnel structures for zinc ion storage[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12): 1487-1491. |
24 | WANG D, LIU L M, ZHAO S J, et al. β-MnO2 as a cathode material for lithium ion batteries from first principles calculations[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(23): 9075-9083. |
25 | YU Z N, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730. |
26 | ALFARUQI M H, ISLAM S, GIM J, et al. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries[J]. Chemical Physics Letters, 2016, 650: 64-68. |
27 | MA K X, LI Q, HONG C, et al. Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55208-55217. |
28 | ZHANG H F, ZHANG Y H, LIU Y R, et al. Oxygen-deficient α-MnO2 nanotube/graphene/N, P codoped porous carbon composite cathode to achieve high-performing zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36668-36678. |
29 | PENG L L, FANG Z W, ZHU Y, et al. Holey 2D nanomaterials for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(9): doi: 10.1002/aenm.201702179. |
30 | LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Advanced Materials (Deerfield Beach, Fla), 2012, 24(30): 4097-4111. |
31 | GUO C, LIU H M, LI J F, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electrochimica Acta, 2019, 304: 370-377. |
32 | CONG L N, XIE H M, LI J H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(12): doi:10.1002/aenm.201601906. |
33 | KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9: 8441. |
34 | LONG F N, XIANG Y H, YANG S N, et al. Layered Manganese dioxide nanoflowers with Cu2+and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery[J]. Journal of Colloid and Interface Science, 2022, 616: 101-109. |
35 | HASHEM A M, ABUZEID H M, NARAYANAN N, et al. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2[J]. Materials Chemistry and Physics, 2011, 130(1/2): 33-38. |
36 | ALFARUQI M H, ISLAM S, MATHEW V, et al. Ambient redox synthesis of vanadium-doped Manganese dioxide nanoparticles and their enhanced zinc storage properties[J]. Applied Surface Science, 2017, 404: 435-442. |
37 | 赵明, 王晓芳, 高娇阳, 等. Cr掺杂二氧化锰纳米棒的制备及其电化学性能[J]. 电源技术, 2012, 36(9): 1313-1315, 1322. |
ZHAO M, WANG X F, GAO J Y, et al. Preparation and electrochemical performance of Cr doped Manganese dioxide nano-rods[J]. Chinese Journal of Power Sources, 2012, 36(9): 1313-1315, 1322. | |
38 | 林煦呐, 宋朝霞, 刘伟, 等. Fe掺杂二氧化锰纳米棒的制备及其电化学性能[J]. 电源技术, 2016, 40(6): 1225-1227. |
LIN X N, SONG Z X, LIU W, et al. Preparation and electrochemical performance of Fe-doped Manganese dioxide nanorods for supercapacitors[J]. Chinese Journal of Power Sources, 2016, 40(6): 1225-1227. | |
39 | WANG L, WU Q Y, ABRAHAM A, et al. Silver-containing α-MnO2 Nanorods: Electrochemistry in rechargeable aqueous Zn-MnO2 batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3575-A3584. |
40 | 笪瑜心, 张振忠, 孙鲁滨, 等. 锡掺杂纳米α-MnO2制备及在锌离子电池中的性能[J]. 电源技术, 2020, 44(2): 192-195. |
DA Y X, ZHANG Z Z, SUN L B, et al. Preparation of Sn-doped nano a-MnO2 and its performance in zinc ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(2): 192-195. | |
41 | 吴长乐, 徐成俊, 牟建, 等. 铌掺杂锌离子电池正极材料的制备及电化学性能研究[J]. 当代化工, 2017, 46(6): 1029-1031. |
WU C L, XU C J,MOU J, et al. Study on synthesis and electrochemical performance of Nb-doped Manganese dioxide as cathode for zinc-ion battery[J]. Contemporary Chemical Industry, 2017, 46(6): 1029-1031. | |
42 | QIU N, CHEN H, YANG Z M, et al. Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries[J]. Electrochimica Acta, 2018, 272: 154-160. |
43 | ZHONG Y J, XU X M, VEDER J P, et al. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries[J]. iScience, 2020, 23(3): doi:10.1002/aenm.201601906. |
44 | ZHANG M S, WU W X, LUO J W, et al. A high-energy-density aqueous zinc-Manganese battery with a La-Ca Co-doped ε-MnO2 cathode[J]. Journal of Materials Chemistry A, 2020, 8(23): 11642-11648. |
45 | WANG J W, SUN X L, ZHAO H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22735-22741. |
46 | 潘双, 王冰, 马泽军, 等. 铝掺杂二氧化锰纳米线的制备及其电化学性能[J]. 压电与声光, 2019, 41(1): 72-75. |
PAN S, WANG B, MA Z J, et al. Preparation and electrochemical performance of Al-doped Manganese dioxide nanowires[J]. Piezoelectrics & Acoustooptics, 2019, 41(1): 72-75. | |
47 | RAHEEM Z H, AL SAMMARRAIE A M A. Synthesis of different Manganese dioxide nanostructures and studding the enhancement of their electrochemical behavior in zinc-MnO2 rechargeable batteries by doping with copper[J]. AIP Conference Proceedings, 2020, 2213(1): 020187. |
48 | 张璐璐, 谭伯川, 李文坡. Cu2+掺杂MnO2作为水系锌离子电池正极材料的合成与电化学性能[J]. 化工学报, 2021, 72(10): 5402-5411. |
ZHANG L L, TAN B C, LI W P. Synthesis and electrochemical properties of Cu2+-doped MnO2 as cathode materials for aqueous zinc ion batteries[J]. CIESC Journal, 2021, 72(10): 5402-5411. | |
49 | 肖酉, 李振, 赵芳霞, 等. 铬掺杂a-MnO2的制备及其在锌离子电池中的性能[J]. 电源技术, 2018, 42(10): 1504-1506. |
XIAO Y, LI Z, ZHAO F X, et al. Preparation of Cr-doping nanosized a-MnO2 and its electrochemical performance in zinc ion battery[J]. Chinese Journal of Power Sources, 2018, 42(10): 1504-1506. | |
50 | XU J W, GAO Q L, XIA Y M, et al. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-Manganese dioxide coated by polypyrrole[J]. Journal of Colloid and Interface Science, 2021, 598: 419-429. |
51 | KATAOKA F, ISHIDA T, NAGITA K, et al. Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4720-4726. |
52 | ZHANG H Z, LIU Q Y, WANG J, et al. Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation[J]. Journal of Materials Chemistry A, 2019, 7(38): 22079-22083. |
53 | DENG Z H, HUANG J D, LIU J, et al. β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life[J]. Materials Letters, 2019, 248: 207-210. |
54 | 李燕丽, 于丹丹, 林森, 等. α-MnO2纳米棒/多孔碳正极材料的制备及水系锌离子电池性能研究[J]. 化学学报, 2021, 79(2): 200-207. |
LI Y L, YU D D, LIN S, et al. Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries[J]. Acta Chimica Sinica, 2021, 79(2): 200-207. | |
55 | SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778. |
56 | XU M, FUTABA D N, YUMURA M, et al. Carbon nanotubes with temperature-invariant creep and creep-recovery from -190 to 970 ℃[J]. Advanced Materials, 2011, 23(32): 3686-3691. |
57 | UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking[J]. Advanced Materials, 2014, 26(33): 5857-5862. |
58 | NI J F, LI Y. Carbon nanomaterials in different dimensions for electrochemical energy storage[J]. Advanced Energy Materials, 2016, 6(17): doi: 10.1002/aenm.201600278. |
59 | CHARLIER J C, BLASE X, ROCHE S. Electronic and transport properties of nanotubes[J]. Reviews of Modern Physics, 2007, 79(2): 677-732. |
60 | XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J]. Electrochimica Acta, 2014, 133: 254-261. |
61 | XIA J L, CHEN F, LI J H, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 2009, 4(8): 505-509. |
62 | WANG C, ZENG Y X, XIAO X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. Journal of Energy Chemistry, 2020, 43: 182-187. |
63 | WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(13): doi: 10.1002/smll.201703850. |
64 | CAO J, ZHANG D D, ZHANG X Y, et al. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode[J]. Applied Surface Science, 2020, 534: doi: 10.1016/j.apsusc.2020.147630. |
65 | FAN X W, LIU P G, OUYANG B X, et al. Polyacrylonitrile derived porous carbon for zinc-ion hybrid capacitors with high energy density[J]. ChemElectroChem, 2021, 8(18): 3572-3578. |
[1] | 孙颖, 赵钦, 尹博思, 马天翼. PTCDI//δ-MnO2 水系铵离子电池性能研究[J]. 储能科学与技术, 2022, 11(4): 1110-1120. |
[2] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
[3] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[4] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[5] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. |
[6] | 夏志美, 陈浩, 肖利, 刘鹏程. 622型三元正极材料的制备及其电化学性能[J]. 储能科学与技术, 2018, 7(5): 921-925. |
[7] | 尚永亮1,王诚文1,刘 斌1,刘 军1,2,柯 曦1,2,刘丽英1,2,施志聪1,2. MnO2包覆的碳纳米管-硫复合正极材料的制备及性能[J]. 储能科学与技术, 2017, 6(3): 411-417. |
[8] | 张艳丽, 王莉, 何向明, 李建军, 高剑, 赵鹏, 张玉峰. 铁基氟化物锂电正极材料研究现状[J]. 储能科学与技术, 2016, 5(1): 44-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||