储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 743-753.doi: 10.19799/j.cnki.2095-4239.2022.0738

• 储能材料与器件 • 上一篇    下一篇

Li xMgNiZnCuCo1-x O高熵氧化物负极材料电化学储锂特性

刘树港1(), 蒙波2, 李政隆3, 杨亚雄3(), 陈建1   

  1. 1.西安工业大学材料与化工学院,陕西 西安 710021
    2.中国航天科技集团有限公司第四研究院,陕西 西安 710025
    3.西安工业大学新能源科学与技术研究院,陕西 西安 710021
  • 收稿日期:2022-12-09 修回日期:2022-12-16 出版日期:2023-03-05 发布日期:2023-01-18
  • 通讯作者: 杨亚雄 E-mail:897260704@qq.com;yangyaxiong@xatu.edu.cn
  • 作者简介:刘树港(1997—),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:897260704@qq.com
  • 基金资助:
    国家自然科学基金青年项目(51901168);陕西省高校科协青年人才托举计划项目(20200428)

Electrochemical performance of chemical prelithiated Li xMg, Ni, Zn, Cu, Co1-x O high-entropy oxide as anode material for lithium ion battery

Shugang LIU1(), Bo MENG2, Zhenglong LI3, Yaxiong YANG3(), Jian CHEN1   

  1. 1.The Materials Science and Chemical Engineering of Xi'an Technological University, Xi'an 710021, Shaanxi, China
    2.The Fourth Academy of CASC, Xi'an 710025, Shaanxi, China
    3.Institute of Science and Technology for New Energy of Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • Received:2022-12-09 Revised:2022-12-16 Online:2023-03-05 Published:2023-01-18
  • Contact: Yaxiong YANG E-mail:897260704@qq.com;yangyaxiong@xatu.edu.cn

摘要:

高熵氧化物是一种新型单相固溶体材料,作为转换反应类型的锂离子电池负极材料近年来受到了广泛关注。本工作通过氧化物与LiH固相加热反应合成了预锂化的单相Li x (Mg,Ni,Zn,Cu,Co)1-x O(x=0,0.08,0.16,0.2)高熵氧化物负极材料,并研究了其电化学储锂特性。结果表明,低价态Li+在晶格中引入以及电荷补偿作用使得高熵氧化物中形成Co3+、Ni3+和氧空位,高价态Co3+和Ni3+的存在提高了转换反应的电子转移数;氧空位的形成提升了高熵氧化物的导电能力,有利于提高转换反应动力学;同时,非活性Mg2+充当缓冲基质保证了电化学过程中的结构稳定性。因此,预锂化的Li0.16(Mg,Ni,Zn,Cu,Co)0.84O高熵氧化物负极材料在100 mA/g的电流密度下表现出679 mAh/g的高可逆比容量,63.7%的首次库仑效率,较小的电极极化(充放电平台电压差为-0.9 V),并且在1000 mA/g的高电流密度下,800次循环后可逆比容量仍保持在651 mAh/g,显示出优异的循环稳定性和倍率特性。

关键词: 锂离子电池, 负极材料, 高熵氧化物, 预锂化

Abstract:

High-entropy oxides, a new class of single-phase solid solution materials, have recently attracted significant attention as conversion-type anode material for lithium-ion batteries (LIBs). Prelithiated Li x (Mg, Ni, Zn, Cu, Co)1-x O (x=0, 0.08, 0.16, 0.2) high-entropy oxide anode materials are synthesized by a chemical reaction of LiH with metal oxides, and the electrochemical performance of the prepared high-entropy oxides are investigated in this study. Introduction of low-valence Li+ in the lattice and charge compensation effect facilitate the formation of Co3+, Ni3+ and oxygen vacancies. Existence of high-valence Co3+ and Ni3+ increases the electron transfer number of the conversion reaction. The oxygen vacancies promote the electron/ion transportation of the oxide electrode and improve the conversion reaction kinetics. Meanwhile, the inactive Mg2+ makes the high entropy oxides maintain the stable rock salt structure upon lithiation/delithiation, which ensures the structural stability during the electrochemical process. As a result, a high reversible specific capacity (679 mAh/g at 100 mA/g), an improved first Coulomb efficiency (63.7%), a decreased polarization (voltage discrepancy between charge and discharge plateaus of -0.9 V), a good cycling stability and high rate capability (reversible specific capacity of 651 mAh/g after 800 cycles at 1000 mA/g) are achieved for prelithiated Li0.16(Mg, Ni, Zn, Cu, Co)0.84O high-entropy oxide anode material.

Key words: lithium-ion batteries, anode materials, high-entropy oxides, prelithiation

中图分类号: