1 |
麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5): 871-888.
|
|
MA Y T, HUANG J, LIU X, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 871-888.
|
2 |
佟永丽, 武祥. 金属有机框架衍生的Co3O4电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043.
|
|
TONG Y L, WU X. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework[J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043.
|
3 |
钮准, 张学燕, 冯佳伟, 等. FeSe2-C三维导电复合材料的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3470-3477.
|
|
NIU Z, ZHANG X Y, FENG J W, et al. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites[J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477.
|
4 |
FAN L L, LI X F, SONG X S, et al. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2637-2648.
|
5 |
YUAN S, DUAN X, LIU J Q, et al. Recent progress on transition metal oxides as advanced materials for energy conversion and storage[J]. Energy Storage Materials, 2021, 42: 317-369.
|
6 |
FANG S, BRESSER D, PASSERINI S. Transition metal oxide anodes for electrochemical energy storage in lithium‐and sodium-ion batteries[J]. Transition Metal Oxides for Electrochemical Energy Storage, 2022: 55-99.
|
7 |
LEI Z H, LEE J M, SINGH G, et al. Recent advances of layered-transition metal oxides for energy-related applications[J]. Energy Storage Materials, 2021, 36: 514-550.
|
8 |
WANG D, JIANG S D, DUAN C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. Journal of Alloys and Compounds, 2020, 844: doi: 10.1016/j.jallcom.2020.156158.
|
9 |
LIU J P, DONG L W, CHEN D J, et al. Metal oxides with distinctive valence states in an electron-rich matrix enable stable high-capacity anodes for Li ion batteries[J]. Small Methods, 2020, 4(2): doi: 10.1002/smtd.201900753.
|
10 |
尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001.
|
|
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001.
|
11 |
YUE L C, MA C Q, YAN S H, et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage[J]. Nano Research, 2022, 15(1): 186-194.
|
12 |
NI S B, LIU J L, CHAO D L, et al. Vanadate-based materials for Li-ion batteries: The search for anodes for practical applications[J]. Advanced Energy Materials, 2019, 9(14): doi: 10.1002/aenm.201803324.
|
13 |
WAN B C, GUO J C, LAI W H, et al. Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 843: doi: 10.1016/j.jallcom.2020.156050.
|
14 |
LI H, WU L J, ZHANG S G, et al. Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 832: doi: 10.1016/j.jallcom.2020.155008.
|
15 |
YANG X B, WANG H Q, SONG Y Y, et al. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022: 14(23): 26873-26881.
|
16 |
DING Y C, HU L H, HE D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery[J]. Chemical Engineering Journal, 2020, 380: doi: 10.1016/j.cej.2019.122489.
|
17 |
SUN R, QIN Z X, LI Z Y, et al. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode[J]. Dalton Transactions (Cambridge, England: 2003), 2020, 49(40): 14237-14242.
|
18 |
CHEN Z W, FEI S M, WU C H, et al. Integrated design of hierarchical CoSnO3@NC@MnO@NC nanobox as anode material for enhanced lithium storage performance[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19768-19777.
|
19 |
LIANG W F, ZHONG L P, QUAN L J, et al. Sandwich-like MoO3/ZnCo2O4 QDs@C@rGO/MoO3 hybrid nanosheets as high-performance anode for lithium-ion batteries[J]. Ceramics International, 2021, 47(22): 32118-32129.
|
20 |
LIU J Z, WU J, ZHOU C C, et al. Single-phase ZnCo2O4 derived ZnO-CoO mesoporous microspheres encapsulated by nitrogen-doped carbon shell as anode for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 825: doi: 10.1016/j.jallcom.2020.153951.
|
21 |
WANG Q S, SARKAR A, WANG D, et al. Multi-anionic and-cationic compounds: New high entropy materials for advanced Li-ion batteries[J]. Energy & Environmental Science, 2019, 12(8): 2433-2442.
|
22 |
SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 1-9.
|
23 |
ROST C M, RAK Z, BRENNER D W, et al. Local structure of the Mgx Nix Cox Cux Znx O(x=0.2) entropy-stabilized oxide: An EXAFS study[J]. Journal of the American Ceramic Society, 2017, 100(6): 2732-2738.
|
24 |
BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(4): 328-333.
|
25 |
BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541.
|
26 |
GRZESIK Z, SMOŁA G, MISZCZAK M, et al. Defect structure and transport properties of (Co, Cr, Fe, Mn, Ni)3O4 spinel-structured high entropy oxide[J]. Journal of the European Ceramic Society, 2020, 40(3): 835-839.
|
27 |
SARKAR A, WANG Q S, SCHIELE A, et al. High-entropy oxides: Fundamental aspects and electrochemical properties[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(26): doi: 10.1002/adma.201806236.
|
28 |
GHIGNA P, AIROLDI L, FRACCHIA M, et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50344-50354.
|
29 |
KHERADMANDFARD M, MINOUEI H, TSVETKOV N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications[J]. Materials Chemistry and Physics, 2021, 262: doi: 10.1016/j.matchemphys. 2021.124265.
|
30 |
CHEN T Y, WANG S Y, KUO C H, et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(41): 21756-21770.
|
31 |
MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318.
|
32 |
SUN J R, HUANG L, XU G J, et al. Mechanistic insight into the impact of pre-lithiation on the cycling stability of lithium-ion battery[J]. Materials Today, 2022, 58: 110-118.
|
33 |
CHUNG D J, YOUN D, KIM S, et al. Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials[J]. Nano Energy, 2021, 89: doi: 10.1016/j.nanoen.2021.106378.
|
34 |
CHOI J, JEONG H, JANG J, et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries[J]. Journal of the American Chemical Society, 2021, 143(24): 9169-9176.
|
35 |
YANG Y X, QU X L, ZHANG X, et al. Higher than 90% initial coulombic efficiency with staghorn-coral-like 3D porous LiFeO2- x as anode materials for Li-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(22): doi: 10.1002/adma.201908285.
|
36 |
XIE W L, YANG Z Q, CHUN H. Catalytic properties of lithium-doped ZnO catalysts used for biodiesel preparations[J]. Industrial & Engineering Chemistry Research, 2007, 46(24): 7942-7949.
|
37 |
USHARANI N J, SHRINGI R, SANGHAVI H, et al. Role of size, alio-/ multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co, Cu, Mg, Na, Ni, Zn)O[J]. Dalton Transactions (Cambridge, England: 2003), 2020, 49(21): 7123-7132.
|
38 |
QIU N, CHEN H, YANG Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance[J]. Journal of Alloys and Compounds, 2019, 777: 767-774.
|
39 |
ZHANG J, JIANG H, ZENG Y B, et al. Oxygen-defective Co3O4 for pseudo-capacitive lithium storage[J]. Journal of Power Sources, 2019, 439: doi: 10.1016/j.jpowsour.2019.227026.
|
40 |
YUAN D, DOU Y H, XU L, et al. Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage[J]. Journal of Materials Chemistry A, 2020, 8(27): 13443-13451.
|