储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 754-767.doi: 10.19799/j.cnki.2095-4239.2022.0638

• 储能材料与器件 • 上一篇    下一篇

水系锌离子电池二氧化锰正极改性研究进展

婷婷1,2(), 林其杭1,2, 刘长洋3, 卞刘振1,2,4(), 孙超1,2, 齐冀1,2, 彭继华1,2,4, 安胜利1,2,3,4()   

  1. 1.内蒙古科技大学材料与冶金学院
    2.内蒙古先进陶瓷材料与器件重点实验室,内蒙古 包头 014010
    3.北京科技大学冶金与生态工程学院,北京 100083
    4.稀土资源绿色提取与高效利用教育部重点实验室,内蒙古 包头 014010
  • 收稿日期:2022-10-31 修回日期:2022-11-18 出版日期:2023-03-05 发布日期:2023-04-14
  • 通讯作者: 卞刘振,安胜利 E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com
  • 作者简介:婷婷(1997—),女,硕士研究生,研究方向为锌离子电池, E-mail:borjiginting@163.com
  • 基金资助:
    国家自然科学基金(52202257);内蒙古自治区自然科学基金博士基金(2020BS05032)

Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries

Ting TING1,2(), Qihang LIN1,2, Changyang LIU3, Liuzhen BIAN1,2,4(), Chao SUN1,2, QI Ji1,2, Jihua PENG1,2,4, Shengli AN1,2,3,4()   

  1. 1.School of Materials and Metallurgy, Inner Mongolia University of Science and Technology
    2.Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China
    3.School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, Beijing 100083, China
    4.Key Laboratory of Green Extraction & Efficient Utilization of Rare-Earth Resources, Ministry of Education, Baotou 014010, Inner Mongolia, China
  • Received:2022-10-31 Revised:2022-11-18 Online:2023-03-05 Published:2023-04-14
  • Contact: Liuzhen BIAN, Shengli AN E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com

摘要:

水系锌离子电池(AZIBs)MnO2正极材料由于具有较高的工作电压和低制造成本等特点而备受关注,MnO2正极固有的导电性差和充放电过程中结构坍塌等问题,导致其比容量较低和循环稳定性较差,严重制约了AZIBs的发展。本文通过调研相关文献,综述了提高MnO2正极材料电导率和循环稳定性的策略,重点介绍了MnO2结构调控、纳米工程、掺杂改性和与高导材料复合等改性策略。通过分析不同晶体结构的MnO2正极材料的电化学性能,建立了MnO2晶体结构与电池比容量之间的构效关系。详细分析了不同的合成手段对MnO2纳米形貌及电池比容量的影响,为不同形貌的MnO2制备提供了指导。同时分析了元素体相掺杂以及高导电碳基材料的添加对MnO2电导率和循环稳定性的影响规律。最后对高性能AZIBs用MnO2正极材料的发展进行了展望,不同的改善策略可以混合使用,并起到协同作用。

关键词: 水系锌离子电池, MnO2, 晶体结构, 纳米形貌, 优化策略

Abstract:

Due to its favorable operating voltage and affordable fabrication, MnO2 cathode for AZIBs has garnered considerable interest. However, the development of rechargeable Zn//MnO2 batteries is severely restricted by the limited specific capacity and poor cycling stability arising from the inherently poor electrical conductivity and structural collapse of MnO2 cathodes during the charge-discharge process. The common methods for increasing the conductivity and cycling stability of the MnO2 cathode are discussed in this review through the use of related literature research and analysis. The relationship between the crystal structure of MnO2 and the specific capacity of the battery was established by examining the electrochemical performance of various structures of MnO2. Meanwhile, the effect of different synthesis methods on MnO2 shapes was also summarized for MnO2 synthesis in the future. Furthermore, a brief discussion of the improvement in conductivity and cycling stability of the MnO2 cathode brought on by the addition of other elements to the MnO2 lattice and carbon-based materials is provided. Finally, the future development of MnO2 cathodes with high performance is investigated. The various enhancement strategies can be synergistically adopted to improve the electrochemical performance of the MnO2 cathode.

Key words: aqueous zinc-ion battery, MnO2, crystal structure, nanomorphology, optimization strategy

中图分类号: