储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 754-767.doi: 10.19799/j.cnki.2095-4239.2022.0638
        
               		婷婷1,2( ), 林其杭1,2, 刘长洋3, 卞刘振1,2,4(
), 林其杭1,2, 刘长洋3, 卞刘振1,2,4( ), 孙超1,2, 齐冀1,2, 彭继华1,2,4, 安胜利1,2,3,4(
), 孙超1,2, 齐冀1,2, 彭继华1,2,4, 安胜利1,2,3,4( )
)
                  
        
        
        
        
    
收稿日期:2022-10-31
									
				
											修回日期:2022-11-18
									
				
									
				
											出版日期:2023-03-05
									
				
											发布日期:2023-04-14
									
			通讯作者:
					卞刘振,安胜利
											E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com
												作者简介:婷婷(1997—),女,硕士研究生,研究方向为锌离子电池, E-mail:borjiginting@163.com;
				
							基金资助:
        
               		Ting TING1,2( ), Qihang LIN1,2, Changyang LIU3, Liuzhen BIAN1,2,4(
), Qihang LIN1,2, Changyang LIU3, Liuzhen BIAN1,2,4( ), Chao SUN1,2, QI Ji1,2, Jihua PENG1,2,4, Shengli AN1,2,3,4(
), Chao SUN1,2, QI Ji1,2, Jihua PENG1,2,4, Shengli AN1,2,3,4( )
)
			  
			
			
			
                
        
    
Received:2022-10-31
									
				
											Revised:2022-11-18
									
				
									
				
											Online:2023-03-05
									
				
											Published:2023-04-14
									
			Contact:
					Liuzhen BIAN, Shengli AN   
											E-mail:borjiginting@163.com;liuzhenbian@126.com;shengli_an@ 126.com
												摘要:
水系锌离子电池(AZIBs)MnO2正极材料由于具有较高的工作电压和低制造成本等特点而备受关注,MnO2正极固有的导电性差和充放电过程中结构坍塌等问题,导致其比容量较低和循环稳定性较差,严重制约了AZIBs的发展。本文通过调研相关文献,综述了提高MnO2正极材料电导率和循环稳定性的策略,重点介绍了MnO2结构调控、纳米工程、掺杂改性和与高导材料复合等改性策略。通过分析不同晶体结构的MnO2正极材料的电化学性能,建立了MnO2晶体结构与电池比容量之间的构效关系。详细分析了不同的合成手段对MnO2纳米形貌及电池比容量的影响,为不同形貌的MnO2制备提供了指导。同时分析了元素体相掺杂以及高导电碳基材料的添加对MnO2电导率和循环稳定性的影响规律。最后对高性能AZIBs用MnO2正极材料的发展进行了展望,不同的改善策略可以混合使用,并起到协同作用。
中图分类号:
婷婷, 林其杭, 刘长洋, 卞刘振, 孙超, 齐冀, 彭继华, 安胜利. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767.
Ting TING, Qihang LIN, Changyang LIU, Liuzhen BIAN, Chao SUN, QI Ji, Jihua PENG, Shengli AN. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 754-767.
 
												
												表1
一价/多价金属的标准电位、理论容量、离子半径和成本[7]"
| Characteristic | Li | Na | K | Mg | Ca | Zn | Al | 
|---|---|---|---|---|---|---|---|
| Standard Potential(verus SHE)/V | -3.040 | -2.713 | -2.924 | -2.356 | -2.840 | -0.763 | -1.676 | 
| Specific capacity/(mAh/g) | 3860 | 1166 | 685 | 2206 | 1337 | 820 | 2980 | 
| Capacity density/(mAh/cm3) | 2061 | 1129 | 610 | 3834 | 2072 | 5855 | 8046 | 
| Ionic radius/Å | 0.76 | 1.02 | 1.38 | 0.72 | 1.00 | 0.75 | 0.53 | 
| Cost of metal anode/(USD/t) | 16500 | 3527 | 19842 | 3307 | — | 2614 | 1744 | 
| Crustal abundance | 17 | 23000 | 15000 | 29000 | 50000 | 79 | 82000 | 
 
												
												表2
AZIBs中掺杂改性后MnO2 材料的结构和电化学性能"
| Cathode | Elactroyte | Voltage /V | Capacity | Capacity retention/ Capacity/n cls/y/(mA/g) | Ref. | 
|---|---|---|---|---|---|
| Al-doped α-MnO2 Nanospheres | 0.5 mol/L Na2SO4 | 0~0.6 | 1127 mF/cm2(2 mA/cm2) | — | [ | 
| Cu-doped β-MnO2 Nanorods | 0.5 mol/L ZnSO4 | 1~1.8 | 202.80 mAh/g | — | [ | 
| Cu-doped α-MnO2 Nanotubes | 0.5 mol/L ZnSO4 | 1~1.8 | 270.81 mAh/g | — | [ | 
| Cu-doped δ-MnO2 Nanoflowers | 0.5 mol/L ZnSO4 | 1~1.8 | 205.54 mAh/g | — | [ | 
| Cu-doped γ-MnO2 Nanostars | 0.5 mol/L ZnSO4 | 1~1.8 | 306.8 mAh/g | — | [ | 
| Cu-doped ε-MnO2 Nanoflakes | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 0.8~1.8 | 235 mA/g(200 mA/g) | 20/22%/60 cls | [ | 
| Cu-doped ε-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 493.3 mA/g(100 mA/g) | 367.7/81%/150 cls /500 | [ | 
| Cu-doped δ-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 363.7 mA/g(500 mA/g) | — | [ | 
| Bi-doped α-MnO2 Nanoflowers | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 175.5 mA/g(100 mA/g) | 114.5/99%/1100 cls /1000 | [ | 
| Bi-doped α-MnO2 Nanowires | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 325 mA/g(300 mA/g) | 240/91%/2000 cls /1000 | [ | 
| V-doped α-MnO2 Nanoparticles | 1 mol/L ZnSO4 | 1~1.8 | 266 mA/g(66 mA/g) | 131/50%/100 cls /100 | [ | 
| Cr-doped α-MnO2 Nanorods | 1 mol/L KOH | -0.3~0.5 | 271 F/g(300 mA/g) | — | [ | 
| Cr-doped α-MnO2 Nanorods | 2 mol/L ZnSO4 | -1.5~1.5 | 257 mA/g(50 mA/g) | 200/78%/10 cls /50 | [ | 
| Fe-doped α-MnO2 Nanorods | 2 mol/L KOH | -0.3~0.4 | 620 F/g(1000 mA/g) | — | [ | 
| Fe-doped α-MnO2@PPy | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.9 | 270 mA/g(100 mA/g) | 100/75%/1000 cls /800 | [ | 
| Ag-doped α-MnO2 Nanorods | 2 mol/L ZnSO4 | 1~1.8 | 240 mA/g(50 mA/g) | — | [ | 
| Sn-doped α-MnO2 Nanorods | 1 mol/L ZnSO4 | -2~1.25 | 589 mA/g(50 mA/g) | 557/95%/20 cls /50 | [ | 
| Nb-doped α-MnO2 Nanoparticles | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1~1.9 | 165 mA/g(1000 mA/g) | 100/61%/50 cls /1000 | [ | 
| Na-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.85 | 266 mA/g(100 mA/g) | 130/80%/2000 cls /2000 | [ | 
| Co-doped δ-MnO2 Nanorflowers | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 1~1.85 | 250 mA/g(100 mA/g) | 100/63%/5000 cls /2000 | [ | 
| Co-doped δ-MnO2 Nanorods@N-CC | 2 mol/L ZnSO4+0.07 mol/L MnSO4 | 1~1.8 | 295 mA/g(93.5 mA/g) | 280/100%/600 cls /1200 | [ | 
| La-doped δ-MnO2 Nanorflorets | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 279 mA/g(100 mA/g) | 175/71%/200 cls /800 | [ | 
| La-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 227 mA/g(200 mA/g) | 64/65%/200 cls /1600 | [ | 
| Ca-doped δ-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 216 mA/g(200 mA/g) | 73/76%/200 cls /1600 | [ | 
| La-Ca-doped ε-MnO2 Nanoparticles | 1 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.9 | 297 mA/g(200 mA/g) | 74/76%/200 cls /1600 | [ | 
| Ce-doped β-MnO2 Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.8 | 260 mA/g(154 mA/g) | 155/46%/400 cls /616 | [ | 
 
												
												表3
AZIBs中与高导材料结合的MnO2 材料的结构和电化学性能"
| Cathode | Morphology | Elactroyte | Voltage /V | Capacity /(mA/g) | Capacity retention/ Capacity/n cls/y/(mA/g) | Ref. | 
|---|---|---|---|---|---|---|
| δ -MnO2/C | Nanoflower | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1.0~1.9 | 200(2000 mA/g) | 279.7/92%/300 cls /300 | [ | 
| β -MnO2@CC | Nanolayer | 3 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.98~1.8 | 326(100 mA/g) | 80%/700 cls/2000 | [ | 
| α -MnO2/PCSs | Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.9 | 350(100 mA/g) | — | [ | 
| α -MnO2@ Porous-C | Nanorods | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 0.8~1.8 | 239(100 mA/g) | 100%/1000 cls/1000 | [ | 
| ε -MnO2@CFP | Nanoparticles | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | 1~1.8 | 290(1 C) | 100%/1000 cls/6.5C | [ | 
| α -MnO2/a-CNT | Nanorods | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 1~1.9 | 400(1000 mA/g) | 98%/500 cls/5000 | [ | 
| γ -MnO2/Graphene | Nanorods | 2 mol/L ZnSO4+0.4 mol/L MnSO4 | 0.8~1.8 | 301(500 mA/g) | 64%/300 cls/20 mA/cm2 | [ | 
| α -MnO2/Graphene Scroll | Nanowires | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.85 | 382(300 mA/g) | 95%/100 cls/1000 | [ | 
| α -MnO2/Graphite | Nanospheres | 2 mol/L ZnSO4+0.5 mol/L MnSO4 | 0.8~1.8 | 230(100 mA/g) | 80%/1000 cls/1000 | [ | 
| δ -MnO2/Graphene Oxide | Nanosheets | 1 mol/L ZnSO4+0.1 mol/L MnSO4 | 1~1.8 | 86(500 mA/g) | 133/100 cls/100 | [ | 
| 1 | SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: A review[J]. Environmental Science and Pollution Research, 2021, 28(13): 15607-15626. | 
| 2 | MCGLADE C, EKINS P. The geographical distribution of fossil fuels unused when limiting global warming to 2 ℃[J]. Nature, 2015, 517(7533): 187-190. | 
| 3 | GÜNEY T. Renewable energy consumption and sustainable development in high-income countries[J]. International Journal of Sustainable Development & World Ecology, 2021, 28(4): 376-385. | 
| 4 | 丛晶, 宋坤, 鲁海威, 等. 新能源电力系统中的储能技术研究综述[J]. 电工电能新技术, 2014, 33(3): 53-59. | 
| CONG J, SONG K, LU H W, et al. Review of energy storage technology for new energy power system[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3): 53-59. | |
| 5 | BHATT M D, O'DWYER C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 4799-4844. | 
| 6 | AMINE K, KANNO R, TZENG Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions[J].MRS Bulletin, 2014, 39(5): 395-401. | 
| 7 | SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): doi:10.1002/adfm.201802564. | 
| 8 | ZHANG N, CHEN X Y, YU M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chemical Society Reviews, 2020, 49(13): 4203-4219. | 
| 9 | ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-Manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405. | 
| 10 | PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/Manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.39. | 
| 11 | CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie (International Ed in English), 2019, 58(23): 7823-7828. | 
| 12 | CHEN W, LI G D, PEI A, et al. A Manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy, 2018, 3(5): 428-435. | 
| 13 | MATEOS M, MAKIVIC N, KIM Y S, et al. Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes[J]. Advanced Energy Materials, 2020, 10(23): doi: 10.1002/aenm.202000332. | 
| 14 | LI G Z, HUANG Z X, CHEN J B, et al. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials[J]. Journal of Materials Chemistry A, 2020, 8(4): 1975-1985. | 
| 15 | GUO X, ZHOU J, BAI C L, et al. Zn/MnO2 battery chemistry with dissolution-deposition mechanism[J]. Materials Today Energy, 2020, 16: doi: 10.1016/j.mtener.2020.100396. | 
| 16 | FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing Manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery[J]. Advanced Functional Materials, 2019, 29(15): doi: 10.1002/adfm.201808375.. | 
| 17 | ZHANG T S, TANG Y, GUO S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review[J]. Energy & Environmental Science, 2020, 13(12): 4625-4665. | 
| 18 | ZHONG C, LIU B, DING J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–Manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449. | 
| 19 | CHUAI M Y, YANG J L, WANG M M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185. | 
| 20 | CHAO D L, YE C, XIE F X, et al. Hybrid aqueous batteries: Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density [J]. Advanced Materials, 2020, 32(25): doi: 10.1002/adma.202001894. | 
| 21 | BROUSSE T, TOUPIN M, DUGAS R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2006, 153(12): A2171. | 
| 22 | DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4406-4417. | 
| 23 | WEI C G, XU C J, LI B H, et al. Preparation and characterization of Manganese dioxides with nano-sized tunnel structures for zinc ion storage[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12): 1487-1491. | 
| 24 | WANG D, LIU L M, ZHAO S J, et al. β-MnO2 as a cathode material for lithium ion batteries from first principles calculations[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(23): 9075-9083. | 
| 25 | YU Z N, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730. | 
| 26 | ALFARUQI M H, ISLAM S, GIM J, et al. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries[J]. Chemical Physics Letters, 2016, 650: 64-68. | 
| 27 | MA K X, LI Q, HONG C, et al. Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55208-55217. | 
| 28 | ZHANG H F, ZHANG Y H, LIU Y R, et al. Oxygen-deficient α-MnO2 nanotube/graphene/N, P codoped porous carbon composite cathode to achieve high-performing zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36668-36678. | 
| 29 | PENG L L, FANG Z W, ZHU Y, et al. Holey 2D nanomaterials for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(9): doi: 10.1002/aenm.201702179. | 
| 30 | LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Advanced Materials (Deerfield Beach, Fla), 2012, 24(30): 4097-4111. | 
| 31 | GUO C, LIU H M, LI J F, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electrochimica Acta, 2019, 304: 370-377. | 
| 32 | CONG L N, XIE H M, LI J H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(12): doi:10.1002/aenm.201601906. | 
| 33 | KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9: 8441. | 
| 34 | LONG F N, XIANG Y H, YANG S N, et al. Layered Manganese dioxide nanoflowers with Cu2+and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery[J]. Journal of Colloid and Interface Science, 2022, 616: 101-109. | 
| 35 | HASHEM A M, ABUZEID H M, NARAYANAN N, et al. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2[J]. Materials Chemistry and Physics, 2011, 130(1/2): 33-38. | 
| 36 | ALFARUQI M H, ISLAM S, MATHEW V, et al. Ambient redox synthesis of vanadium-doped Manganese dioxide nanoparticles and their enhanced zinc storage properties[J]. Applied Surface Science, 2017, 404: 435-442. | 
| 37 | 赵明, 王晓芳, 高娇阳, 等. Cr掺杂二氧化锰纳米棒的制备及其电化学性能[J]. 电源技术, 2012, 36(9): 1313-1315, 1322. | 
| ZHAO M, WANG X F, GAO J Y, et al. Preparation and electrochemical performance of Cr doped Manganese dioxide nano-rods[J]. Chinese Journal of Power Sources, 2012, 36(9): 1313-1315, 1322. | |
| 38 | 林煦呐, 宋朝霞, 刘伟, 等. Fe掺杂二氧化锰纳米棒的制备及其电化学性能[J]. 电源技术, 2016, 40(6): 1225-1227. | 
| LIN X N, SONG Z X, LIU W, et al. Preparation and electrochemical performance of Fe-doped Manganese dioxide nanorods for supercapacitors[J]. Chinese Journal of Power Sources, 2016, 40(6): 1225-1227. | |
| 39 | WANG L, WU Q Y, ABRAHAM A, et al. Silver-containing α-MnO2 Nanorods: Electrochemistry in rechargeable aqueous Zn-MnO2 batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3575-A3584. | 
| 40 | 笪瑜心, 张振忠, 孙鲁滨, 等. 锡掺杂纳米α-MnO2制备及在锌离子电池中的性能[J]. 电源技术, 2020, 44(2): 192-195. | 
| DA Y X, ZHANG Z Z, SUN L B, et al. Preparation of Sn-doped nano a-MnO2 and its performance in zinc ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(2): 192-195. | |
| 41 | 吴长乐, 徐成俊, 牟建, 等. 铌掺杂锌离子电池正极材料的制备及电化学性能研究[J]. 当代化工, 2017, 46(6): 1029-1031. | 
| WU C L, XU C J,MOU J, et al. Study on synthesis and electrochemical performance of Nb-doped Manganese dioxide as cathode for zinc-ion battery[J]. Contemporary Chemical Industry, 2017, 46(6): 1029-1031. | |
| 42 | QIU N, CHEN H, YANG Z M, et al. Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries[J]. Electrochimica Acta, 2018, 272: 154-160. | 
| 43 | ZHONG Y J, XU X M, VEDER J P, et al. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries[J]. iScience, 2020, 23(3): doi:10.1002/aenm.201601906. | 
| 44 | ZHANG M S, WU W X, LUO J W, et al. A high-energy-density aqueous zinc-Manganese battery with a La-Ca Co-doped ε-MnO2 cathode[J]. Journal of Materials Chemistry A, 2020, 8(23): 11642-11648. | 
| 45 | WANG J W, SUN X L, ZHAO H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22735-22741. | 
| 46 | 潘双, 王冰, 马泽军, 等. 铝掺杂二氧化锰纳米线的制备及其电化学性能[J]. 压电与声光, 2019, 41(1): 72-75. | 
| PAN S, WANG B, MA Z J, et al. Preparation and electrochemical performance of Al-doped Manganese dioxide nanowires[J]. Piezoelectrics & Acoustooptics, 2019, 41(1): 72-75. | |
| 47 | RAHEEM Z H, AL SAMMARRAIE A M A. Synthesis of different Manganese dioxide nanostructures and studding the enhancement of their electrochemical behavior in zinc-MnO2 rechargeable batteries by doping with copper[J]. AIP Conference Proceedings, 2020, 2213(1): 020187. | 
| 48 | 张璐璐, 谭伯川, 李文坡. Cu2+掺杂MnO2作为水系锌离子电池正极材料的合成与电化学性能[J]. 化工学报, 2021, 72(10): 5402-5411. | 
| ZHANG L L, TAN B C, LI W P. Synthesis and electrochemical properties of Cu2+-doped MnO2 as cathode materials for aqueous zinc ion batteries[J]. CIESC Journal, 2021, 72(10): 5402-5411. | |
| 49 | 肖酉, 李振, 赵芳霞, 等. 铬掺杂a-MnO2的制备及其在锌离子电池中的性能[J]. 电源技术, 2018, 42(10): 1504-1506. | 
| XIAO Y, LI Z, ZHAO F X, et al. Preparation of Cr-doping nanosized a-MnO2 and its electrochemical performance in zinc ion battery[J]. Chinese Journal of Power Sources, 2018, 42(10): 1504-1506. | |
| 50 | XU J W, GAO Q L, XIA Y M, et al. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-Manganese dioxide coated by polypyrrole[J]. Journal of Colloid and Interface Science, 2021, 598: 419-429. | 
| 51 | KATAOKA F, ISHIDA T, NAGITA K, et al. Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4720-4726. | 
| 52 | ZHANG H Z, LIU Q Y, WANG J, et al. Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation[J]. Journal of Materials Chemistry A, 2019, 7(38): 22079-22083. | 
| 53 | DENG Z H, HUANG J D, LIU J, et al. β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life[J]. Materials Letters, 2019, 248: 207-210. | 
| 54 | 李燕丽, 于丹丹, 林森, 等. α-MnO2纳米棒/多孔碳正极材料的制备及水系锌离子电池性能研究[J]. 化学学报, 2021, 79(2): 200-207. | 
| LI Y L, YU D D, LIN S, et al. Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries[J]. Acta Chimica Sinica, 2021, 79(2): 200-207. | |
| 55 | SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778. | 
| 56 | XU M, FUTABA D N, YUMURA M, et al. Carbon nanotubes with temperature-invariant creep and creep-recovery from -190 to 970 ℃[J]. Advanced Materials, 2011, 23(32): 3686-3691. | 
| 57 | UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking[J]. Advanced Materials, 2014, 26(33): 5857-5862. | 
| 58 | NI J F, LI Y. Carbon nanomaterials in different dimensions for electrochemical energy storage[J]. Advanced Energy Materials, 2016, 6(17): doi: 10.1002/aenm.201600278. | 
| 59 | CHARLIER J C, BLASE X, ROCHE S. Electronic and transport properties of nanotubes[J]. Reviews of Modern Physics, 2007, 79(2): 677-732. | 
| 60 | XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J]. Electrochimica Acta, 2014, 133: 254-261. | 
| 61 | XIA J L, CHEN F, LI J H, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 2009, 4(8): 505-509. | 
| 62 | WANG C, ZENG Y X, XIAO X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. Journal of Energy Chemistry, 2020, 43: 182-187. | 
| 63 | WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(13): doi: 10.1002/smll.201703850. | 
| 64 | CAO J, ZHANG D D, ZHANG X Y, et al. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode[J]. Applied Surface Science, 2020, 534: doi: 10.1016/j.apsusc.2020.147630. | 
| 65 | FAN X W, LIU P G, OUYANG B X, et al. Polyacrylonitrile derived porous carbon for zinc-ion hybrid capacitors with high energy density[J]. ChemElectroChem, 2021, 8(18): 3572-3578. | 
| [1] | 孙颖, 赵钦, 尹博思, 马天翼. PTCDI//δ-MnO2 水系铵离子电池性能研究[J]. 储能科学与技术, 2022, 11(4): 1110-1120. | 
| [2] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. | 
| [3] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. | 
| [4] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. | 
| [5] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. | 
| [6] | 夏志美, 陈浩, 肖利, 刘鹏程. 622型三元正极材料的制备及其电化学性能[J]. 储能科学与技术, 2018, 7(5): 921-925. | 
| [7] | 尚永亮1,王诚文1,刘 斌1,刘 军1,2,柯 曦1,2,刘丽英1,2,施志聪1,2. MnO2包覆的碳纳米管-硫复合正极材料的制备及性能[J]. 储能科学与技术, 2017, 6(3): 411-417. | 
| [8] | 张艳丽, 王莉, 何向明, 李建军, 高剑, 赵鹏, 张玉峰. 铁基氟化物锂电正极材料研究现状[J]. 储能科学与技术, 2016, 5(1): 44-57. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
