储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 42-53.doi: 10.19799/j.cnki.2095-4239.2024.0621

• 储能材料与器件 • 上一篇    下一篇

高稳定水系锌离子电池PANI包覆钒化合物阴极材料

鲁杰1(), 杜娴2, 师玉璞2, 李卓3, 曹娜3, 杜珣涛4, 杜慧玲2()   

  1. 1.西安科技大学机械工程学院
    2.西安科技大学材料科学与工程学院
    3.西安科技大学安全科学与工程学院,陕西 西安 710054
    4.深圳市比亚迪锂电池有限公司坑梓分公司,广东 深圳 518122
  • 收稿日期:2024-06-21 修回日期:2024-07-24 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 杜慧玲 E-mail:18105016001@stu.xust.edu.cn;hldu@xust.edu.cn
  • 作者简介:鲁杰(1991—),男,博士研究生,研究方向为水系锌离子电池正极,E-mail:18105016001@stu.xust.edu.cn
  • 基金资助:
    国家自然科学基金(52172099);陕西省省级联合基金(2021JLM-28)

PANI-coated vanadium compound as high-stable aqueous zinc-ion batteries cathode material

Jie LU1(), Xian DU2, Yupu SHI2, Zhuo LI3, Na CAO3, Xuntao DU4, Huiling DU2()   

  1. 1.College of Mechanical Engineering
    2.College of Materials Science and Engineering
    3.College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
    4.Shenzhen BYD Lithium Battery Co. , Ltd. , Kengzi Branch, Shenzhen 518122, Guangdong, China
  • Received:2024-06-21 Revised:2024-07-24 Online:2025-01-28 Published:2025-02-25
  • Contact: Huiling DU E-mail:18105016001@stu.xust.edu.cn;hldu@xust.edu.cn

摘要:

具有多种晶体结构的钒化合物具有较高的理论容量,被认为是一种很有前途的水系锌离子电池阴极材料,但由于钒化合物锌离子扩散缓慢,结构稳定性差,限制了其进一步发展。本文通过简单一步水热法设计合成了Mn(VO3)2-NaV8O20异质结纳米带,并通过静电自组装法将聚苯胺(PANI)薄膜包覆在纳米带表面,制备出Mn(VO3)2-NaV8O20@PANI (PMNVO) 复合材料,在两种策略协同作用下,实现了高效离子-电子协同传输,获得了高锌离子传输速率、高储锌性能、晶体结构稳定水系锌离子电池(AZIBs)阴极材料。实验结果表明,两种晶体间的异质结界面增强了锌的电荷转移动力学,改善了锌的扩散动力学,纳米带形貌提供了更多的反应活性位点。此外,与PANI复合,材料导电性增强,晶体结构更稳定,使得PMNVO具有优异的储锌性能及电化学动力。具体测试结果为,当PMNVO的电流密度为0.2 A/g时,比容量为417.6 mAh/g;在1 A/g下,初始比容量为360.3 mAh/g,200次循环后的容量保持率为91.0%;在8 A/g下,初始比容量为189.3 mAh/g,3000次循环后的容量保持率为99.3%,倍率性能优异且循环寿命较长;表观扩散系数为4.97×10-11~1.87×10-10cm2/s,电化学动力学良好。本文为AZIBs阴极材料的设计提供了一个范例。

关键词: 钒基阴极, 异质结, 聚苯胺包覆, 水系锌离子电池

Abstract:

Vanadium compounds with a variety of crystal structures have high theoretical capacity and are considered a promising positive electrode material for water-based zinc-ion batteries. However, due to the slow diffusion of zinc ions and poor structural stability, further development is limited. In this paper, Mn(VO3)2-NaV8O20 heterogeneous nanoribbons were designed and synthesized using a simple one-step hydrothermal method. A Mn(VO3)2-NaV8O20@PANI (PMNVO) composite material was then created by applying a PANI film on the nanoribbons' surface through an electrostatic self-assembly method. By combining these two strategies, the cathode material for AZIBs demonstrates efficient ion-electron cooperative transport, rapid zinc ion transport rate, excellent zinc storage performance, and a stable crystal structure. Experimental results demonstrate that the heterogeneous interface between the two crystals enhances the charge transfer kinetics of zinc, improves zinc diffusion kinetics, and the nanoribbon morphology provides more reactive sites. Additionally, when combined with PANI, the material's electrical conductivity is enhanced, and the crystal structure is more stable, resulting in PMNVO exhibiting excellent Zn storage properties and high electrochemical kinetics. Specific test results indicate that at a current density of 0.2 A/g, the specific capacity of PMNVO is 417.6 mAh/g. At 1 A/g, the initial specific capacity is 360.3 mAh/g, with a capacity retention rate of 91.0% after 200 cycles. At 8 A/g, the initial specific capacity is 189.3 mAh/g, and the capacity retention rate after 3000 cycles is 99.3%, demonstrating excellent rate performance and long cycle life. The apparent diffusion coefficient ranges from 1.87×10-10 to 4.97×10-11 cm2/s, indicating good electrochemical kinetics. This study serves as an example for the design of AZIBs cathode materials.

Key words: vanadium-based cathodes, heterogeneous structure, PANI-coated, aqueous zinc-ion battery

中图分类号: