储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1969-1981.doi: 10.19799/j.cnki.2095-4239.2024.1091
收稿日期:
2024-11-25
修回日期:
2024-12-21
出版日期:
2025-05-28
发布日期:
2025-05-21
通讯作者:
尹文良
E-mail:22504040045@stumail.sdut.edu.cn;yinwenliang@sdut.edu.cn
作者简介:
李明(1998—),男,硕士研究生,主要从事分布式电源并网技术及应用研究,E-mail:22504040045@stumail.sdut.edu.cn;
基金资助:
Ming LI(), Wenliang YIN(
), Yongkang LI, Chenye SUN, Jiajia CHEN
Received:
2024-11-25
Revised:
2024-12-21
Online:
2025-05-28
Published:
2025-05-21
Contact:
Wenliang YIN
E-mail:22504040045@stumail.sdut.edu.cn;yinwenliang@sdut.edu.cn
摘要:
在全球能源转型的背景下,微电网作为一种灵活的分布式资源有效集成方案,对于能源系统的可持续发展显得至关重要。微电网不仅能够提升电力系统的灵活性和可靠性,还为实现低碳经济目标提供切实可行的途径。本文以提高微电网的运行经济性、稳定性和低碳性为目标,旨在考虑多源耦合的不确定性环境下,探索含电氢储能的微电网低碳经济优化配置方案。具体而言,首先在分析微电网中各单元运行特性的基础上,应用场景生成和基于改进的K-means聚类算法,构建风电、光伏发电及电力负荷的典型场景集来处理不确定性问题。然后,以综合成本最小化为微电网上层容量优化的目标,以系统总运行成本的最小化为下层运行优化的目标。同时引入阶梯碳交易机制,建立微电网双层优化配置的模型。最终,结合改进的乌燕鸥算法和混合整数线性规划方法求解所建立的双层优化模型,进而确定微电网的最优容量配置。通过基于华中地区某地年气象和负荷数据的算例分析,验证了所提方法的有效性与优越性。
中图分类号:
李明, 尹文良, 李勇康, 孙晨业, 陈佳佳. 多源耦合不确定性下含电氢储能的微电网低碳容量优化配置研究[J]. 储能科学与技术, 2025, 14(5): 1969-1981.
Ming LI, Wenliang YIN, Yongkang LI, Chenye SUN, Jiajia CHEN. Low-carbon capacity optimal configuration of microgrid with hydrogen energy storage under multi-source coupling uncertainties[J]. Energy Storage Science and Technology, 2025, 14(5): 1969-1981.
1 | 张世旭, 李姚旺, 刘伟生, 等. 面向微电网群的云储能经济-低碳-可靠多目标优化配置方法[J]. 电力系统自动化, 2024, 48(1): 21-30. DOI: 10.7500/AEPS20230615003. |
ZHANG S X, LI Y W, LIU W S, et al. Economic, low-carbon and reliable multi-objective optimal configuration method of cloud energy storage for microgrid clusters[J]. Automation of Electric Power Systems, 2024, 48(1): 21-30. DOI: 10.7500/AEPS202306 15003. | |
2 | ABDELGHANY M B, AL-DURRA A, GAO F. A coordinated optimal operation of a grid-connected wind-solar microgrid incorporating hybrid energy storage management systems[J]. IEEE Transactions on Sustainable Energy, 2024, 15(1): 39-51. |
3 | 肖白, 刘健康, 张博, 等. 考虑阶梯碳交易和需求响应的含氢储能的并网型微电网优化配置[J]. 电力自动化设备, 2023, 43(1): 121-129. DOI: 10.16081/j.epae.202204074. |
XIAO B, LIU J K, ZHANG B, et al. Optimal configuration of grid-connected microgrid with hydrogen energy storage considering ladder-type carbon trading and demand response[J]. Electric Power Automation Equipment, 2023, 43(1): 121-129. DOI: 10. 16081/j.epae.202204074. | |
4 | CHEN X Q, DONG W, YANG Q. Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties[J]. Applied Energy, 2022, 323: 119642. DOI: 10.1016/j.apenergy.2022. 119642. |
5 | 杨清, 袁越, 王敏, 等. 独立型水光储微电网系统容量优化配置[J]. 电力自动化设备, 2015, 35(10): 37-44. DOI: 10.16081/j.issn.1006-6047.2015.10.006. |
YANG Q, YUAN Y, WANG M, et al. Optimal capacity configuration of standalone hydro-photovoltaic-storage microgrid[J]. Electric Power Automation Equipment, 2015, 35(10): 37-44. DOI: 10. 16081/j.issn.1006-6047.2015.10.006. | |
6 | 刘慧文, 王生铁, 刘广忱, 等. 风光柴储微电网容量优化配置的运行策略[J]. 太阳能学报, 2022, 43(9): 453-460. DOI: 10.19912/j.0254-0096.tynxb.2021-1395. |
LIU H W, WANG S T, LIU G C, et al. Operation strategy of optimal capacity configuration for microgrid with wt-pv-de-bes[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 453-460. DOI: 10. 19912/j.0254-0096.tynxb.2021-1395. | |
7 | 刘峪涵, 汪沨, 谭阳红. 并网型微电网多目标容量优化配置及减排效益分析[J]. 电力系统及其自动化学报, 2017, 29(9): 70-75. DOI: 10. 3969/j.issn.1003-8930.2017.09.012. |
LIU Y H, WANG F, TAN Y H. Multi-objective optimal capacity configuration and emission reduction benefit analysis of grid-connected microgrid[J]. Proceedings of the CSU-EPSA, 2017, 29(9): 70-75. DOI: 10.3969/j.issn.1003-8930.2017.09.012. | |
8 | 李咸善, 方婧, 郭诗书, 等. 基于灵敏度分析的并网型微电网容量优化配置[J]. 电力系统保护与控制, 2018, 46(23): 8-17. |
LI X S, FANG J, GUO S S, et al. Capacity sizing optimal for grid-connected micro-grid based on sensitivity analysis[J]. Power System Protection and Control, 2018, 46(23): 8-17. | |
9 | 崔明勇, 杨林林, 杨少华, 等. 基于需求侧响应的水风互补微电网容量优化配置[J]. 电工电能新技术, 2022, 41(2): 21-34. DOI: 10. 12067/ATEEE2105023. |
CUI M Y, YANG L L, YANG S H, et al. Optimal configuration of hydro-wind complementary micro-grid considering demand-side response[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 21-34. DOI: 10.12067/ATEEE2105023. | |
10 | 刘振国, 胡亚平, 陈炯聪, 等. 基于双层优化的微电网系统规划设计方法[J]. 电力系统保护与控制, 2015, 43(8): 124-133. |
LIU Z G, HU Y P, CHEN J C, et al. A planning and design method for microgrid based on two-stage optimization[J]. Power System Protection and Control, 2015, 43(8): 124-133. | |
11 | 吴景霞, 索金琳. 基于改进DEC算法的风光氢系统容量配置[J]. 电网与清洁能源, 2022, 38(11): 98-106. |
WU J X, SUO J L. Capacity configuration of wind-solar combined power generation system coupled with hydrogen energy storage based on improved DEC algorithm[J]. Power System and Clean Energy, 2022, 38(11): 98-106. | |
12 | ALMADHOR A, RAUF H T, KHAN M A, et al. A hybrid algorithm (BAPSO) for capacity configuration optimization in a distributed solar PV based microgrid[J]. Energy Reports, 2021, 7: 7906-7912. DOI: 10.1016/j.egyr.2021.01.034. |
13 | 余雪莹, 李华强, 杨龙杰, 等. 兼顾企业综合成本与用户用电体验的微电网双层优化配置[J]. 电力科学与技术学报, 2020, 35(2): 38-45. DOI: 10.19781/j.issn.1673-9140.2020.02.005. |
YU X Y, LI H Q, YANG L J, et al. Bi-level programming method for optimal sizing of grid-connected DC microgrid system based on economic efficiency of enterprises and customer electricity experience[J]. Journal of Electric Power Science and Technology, 2020, 35(2): 38-45. DOI: 10.19781/j.issn.1673-9140.2020.02.005. | |
14 | 张靠社, 冯培基, 张刚, 等. 考虑机会约束的多能源微电网双层优化配置[J]. 太阳能学报, 2021, 42(8): 41-48. DOI: 10.19912/j.0254-0096.tynxb.2020-1015. |
ZHANG K S, FENG P J, ZHANG G, et al. Bi-level optimization configuration method for multienergy microgrid considering chance constraints[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 41-48. DOI: 10.19912/j.0254-0096.tynxb.2020-1015. | |
15 | 刘思夷, 赵波, 汪湘晋, 等. 基于Benders分解的独立型微电网鲁棒优化容量配置模型[J]. 电力系统自动化, 2017, 41(21): 119-126, 146. |
LIU S Y, ZHAO B, WANG X J, et al. Capacity configuration model for robust optimization of stand-alone microgrid based on benders decomposition[J]. Automation of Electric Power Systems, 2017, 41(21): 119-126, 146. | |
16 | 司杨, 陈来军, 陈晓弢, 等. 基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41(10): 3-10. DOI: 10.16081/j.epae.202110012. |
SI Y, CHEN L J, CHEN X T, et al. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41(10): 3-10. DOI: 10.16081/j.epae.202110012. | |
17 | FANG F, ZHU Z Y, JIN S P, et al. Two-layer game theoretic microgrid capacity optimization considering uncertainty of renewable energy[J]. IEEE Systems Journal, 2021, 15(3): 4260-4271. DOI: 10.1109/JSYST.2020.3008316. |
18 | LU Z M, GAO Y, XU C B, et al. Configuration optimization of an off-grid multi-energy microgrid based on modified NSGA-II and order relation-TODIM considering uncertainties of renewable energy and load[J]. Journal of Cleaner Production, 2023, 383: 135312. DOI: 10.1016/j.jclepro.2022.135312. |
19 | 陈兴龙, 曹喜民, 陈洁, 等. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
CHEN X L, CAO X M, CHEN J, et al. Optimized dispatch of park integrated energy system with thermoelectric flexible response under green certificate-carbon trading mechanism[J]. Electric Power, 2024, 57(6): 110-120. | |
20 | 矫舒美, 乔学博, 李勇, 等. 计及综合能源系统全寿命周期碳排放和碳交易的电转气设备和光伏联合优化配置[J]. 电力自动化设备, 2021, 41(9): 156-163. DOI: 10.16081/j.epae.202109044. |
JIAO S M, QIAO X B, LI Y, et al. Joint optimal configuration of P2G equipment and PV considering life-cycle carbon emissions and carbon trading of IES[J]. Electric Power Automation Equipment, 2021, 41(9): 156-163. DOI: 10.16081/j.epae.2021 09044. | |
21 | 苏志鹏, 王莉, 梁欣怡, 等. 考虑阶梯式碳交易及综合需求响应的虚拟电厂优化调度[J]. 中国电力, 2023, 56(12): 174-182. |
SU Z P, WANG L, LIANG X Y, et al. Optimal dispatch of virtual power plant considering stepped carbon trading and comprehensive demand response[J]. Electric Power, 2023, 56(12): 174-182. | |
22 | 王继东, 边翊楠, 许秋铭, 等. 考虑风险和碳交易机制的微电网分布鲁棒优化调度[J]. 高电压技术, 2024, 50(8): 3477-3487. DOI: 10. 13336/j.1003-6520.hve.20230501. |
WANG J D, BIAN Y N, XU Q M, et al. Distributional robust optimal dispatching of microgrid considering risk and carbon trading mechanism[J]. High Voltage Engineering, 2024, 50(8): 3477-3487. DOI: 10.13336/j.1003-6520.hve.20230501. | |
23 | BHATT A, ONGSAKUL W, MADHU M N, et al. Optimal energy management system for carbon-neutral microgrid integrating second-life batteries and crypto mining devices[J]. Sustainable Energy Technologies and Assessments, 2024, 64: 103686. DOI: 10.1016/j.seta.2024.103686. |
24 | 王佳旭, 苗世洪, 姚福星, 等. 考虑全寿命周期碳计量和碳交易机制的多目标微电网系统容量优化配置研究[J]. 现代电力, 2025, 42(2): 263-271. DOI: 10.19725/j.cnki.1007-2322.2023.0106. |
WANG J X, MIAO S H, YAO F X, et al. Multi-objective capacity optimization configuration in microgrid considering life cycle carbon metering and carbon trading mechanism[J]. Modern Electric Power, 2025, 42(2): 263-271. DOI: 10.19725/j.cnki.1007-2322. 2023.0106. | |
25 | DENG H D, WANG J J, SHAO Y M, et al. Optimization of configurations and scheduling of shared hybrid electric-hydrogen energy storages supporting to multi-microgrid system[J]. Journal of Energy Storage, 2023, 74: 109420. DOI: 10.1016/j.est.2023. 109420. |
26 | MODU B, ABDULLAH M P, BUKAR A L, et al. A systematic review of hybrid renewable energy systems with hydrogen storage: Sizing, optimization, and energy management strategy[J]. International Journal of Hydrogen Energy, 2023, 48(97): 38354-38373. DOI: 10.1016/j.ijhydene.2023.06.126. |
27 | ZHANG X H, GAO W B, ZHONG J Q. Decentralized economic dispatching of multi-micro grid considering wind power and photovoltaic output uncertainty[J]. IEEE Access, 2021, 9: 104093-104103. |
28 | 吕海鹏, 希望⋅阿不都瓦依提, 孟令鹏. 计及源-荷预测不确定性的微电网双级随机优化调度[J]. 电力自动化设备, 2022, 42(9): 70-78. DOI: 10.16081/j.epae.202203030. |
LÜ H P, XIWANG·Abuduwayiti,MENG L P. Two-level stochastic optimal scheduling of microgrid considering uncertainty of source-load prediction[J]. Electric Power Automation Equipment, 2022, 42(9): 70-78. DOI: 10.16081/j.epae.202203030. | |
29 | HETZER J, YU D C, BHATTARAI K. An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 603-611. DOI: 10.1109/TEC. 2007. 914171. |
30 | 王成山, 洪博文, 郭力. 不同场景下的光蓄微电网调度策略[J]. 电网技术, 2013, 37(7): 1775-1782. DOI: 10.13335/j.1000-3673.pst. 2013.07.031. |
WANG C S, HONG B W, GUO L. Dispatch strategies of PV-battery microgrid in different scenarios[J]. Power System Technology, 2013, 37(7): 1775-1782. DOI: 10.13335/j.1000-3673.pst.2013.07.031. | |
31 | WAN H, MCCALLEY J D, VITTAL V. Risk based voltage security assessment[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1247-1254. DOI: 10.1109/59.898097. |
32 | 樊晓伟, 王瑞妙, 朱小军, 等. 考虑风光荷时序波动特性的配电网投资策略多目标优化[J]. 可再生能源, 2023, 41(2): 268-276. DOI: 10. 13941/j.cnki.21-1469/tk.2023.02.006. |
FAN X W, WANG R M, ZHU X J, et al. Multi-objective optimization of distribution network investment strategy considering the time series fluctuation of wind power generation, photovoltaic power generation and power load[J]. Renewable Energy Resources, 2023, 41(2): 268-276. DOI: 10.13941/j.cnki. 21-1469/tk.2023. 02.006. | |
33 | 黄纯, 刘鹏辉, 江亚群, 等. 基于动态时间弯曲距离的主动配电网馈线差动保护[J]. 电工技术学报, 2017, 32(6): 240-247. DOI: 10. 19595/j.cnki.1000-6753.tces.2017.06.027. |
HUANG C, LIU P H, JIANG Y Q, et al. Feeder differential protection based on dynamic time warping distance in active distribution network[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 240-247. DOI: 10.19595/j.cnki.1000-6753.tces. 2017.06.027. | |
34 | 王业, 陆于平, 徐以超, 等. 基于动态时间弯曲的差动保护算法[J]. 中国电机工程学报, 2012, 32(28): 133-141, 8. DOI: 10.13334/j.0258-8013.pcsee.2012.28.018. |
WANG Y, LU Y P, XU Y C, et al. A differential protection algorithm based on dynamic time warping[J]. Proceedings of the CSEE, 2012, 32(28): 133-141, 8. DOI: 10.13334/j.0258-8013.pcsee. 2012.28.018. | |
35 | DHIMAN G, KAUR A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 148-174. DOI: 10.1016/j.engappai.2019.03.021. |
36 | 肖永江, 于永进, 张桂林. 基于改进乌燕鸥算法的分布式电源优化配置[J]. 电力系统保护与控制, 2022, 50(3): 148-155. DOI: 10.19783/j.cnki.pspc.210381. |
XIAO Y J, YU Y J, ZHANG G L. Optimal configuration of distributed power generation based on an improved sooty tern optimization algorithm[J]. Power System Protection and Control, 2022, 50(3): 148-155. DOI: 10.19783/j.cnki.pspc.210381. |
[1] | 李永奇, 杜蕴, 方振华, 张松通, 祝夏雨, 胡海良, 邱景义, 明海. 军用新能源微电网系统的运维及故障处置分析[J]. 储能科学与技术, 2024, 13(8): 2740-2757. |
[2] | 侯世豪, 赵波, 张利. 能源转型下基于碳排放与新能源阶梯惩罚的抽水蓄能双层优化研究[J]. 储能科学与技术, 2024, 13(7): 2414-2424. |
[3] | 黄思远, 王晨, 梁婷, 姜竹, 李佳静, 折晓会, 张小松. 液态空气储能耦合综合能源系统热电联储联供优化配置研究[J]. 储能科学与技术, 2024, 13(6): 1929-1939. |
[4] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[5] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[6] | 林旗力, 陈珍, 王晓虎, 戚宏勋, 王伟. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. |
[7] | 乔顺庆, 田桂珍, 张建伟, 韩小宇. 储能系统的参数自适应改进VDCM控制策略[J]. 储能科学与技术, 2024, 13(11): 3993-4004. |
[8] | 张响, 段俊东, 康博阳. 考虑电动汽车灵活储能的微电网双重激励优化调度[J]. 储能科学与技术, 2023, 12(8): 2556-2564. |
[9] | 魏震波, 姚怡欣, 张雯雯, 罗紫航, 李银江, 任语杰. 基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置[J]. 储能科学与技术, 2023, 12(11): 3414-3424. |
[10] | 刘连德, 何江, 周家旭, 李翠萍, 李凯强, 朱星旭, 严干贵, 李军徽. 含高比例风光发电的电力系统中抽蓄电站的优化控制策略[J]. 储能科学与技术, 2022, 11(7): 2197-2205. |
[11] | 申景潮, 胡健, 胡敬梁, 焦提操, 齐晓妹, 王云鹏, 于娣, 刘尚奇. 直流微电网储能装置双向DC-DC变换器参数自适应反步控制[J]. 储能科学与技术, 2022, 11(5): 1512-1522. |
[12] | 周晗, 李正宇, 徐俊辉, 陈留平, 龚领会. 我国可再生能源与盐穴氢储能技术耦合发电的分析与展望[J]. 储能科学与技术, 2022, 11(12): 4059-4066. |
[13] | 李秀慧, 崔炎. 考虑调峰调频需求的新能源电网储能优化配置[J]. 储能科学与技术, 2022, 11(11): 3594-3602. |
[14] | 李瑜, 张占强, 孟克其劳, 魏皓天. 基于分层控制的孤岛微电网储能优化控制策略[J]. 储能科学与技术, 2022, 11(1): 176-184. |
[15] | 徐余丰, 严加斌, 何建明, 琚正伟, 程革, 郑达, 邹印龙, 叶磊, 王建新. 退役动力锂电池在光储微电网的集成与应用[J]. 储能科学与技术, 2021, 10(1): 349-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||