储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2558-2566.doi: 10.19799/j.cnki.2095-4239.2024.1250

• 储能技术经济性分析 • 上一篇    下一篇

多因素约束下源-储-荷协同的风储氢氨优化配置策略研究

张彦虎2(), 汪慧1(), 邹绍琨2, 韦安2, 罗德俊2, 江友华1()   

  1. 1.上海电力大学电子与信息工程学院,上海 201306
    2.阳光新能源开发股份有限公司,安徽 合肥 230088
  • 收稿日期:2024-12-30 修回日期:2025-01-25 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 汪慧,江友华 E-mail:zhangyh@sungrowpower.com;ghostins0311@163.com;jyhua0306@sina.com
  • 作者简介:张彦虎(1976—),男,博士,高级工程师,研究方向为光伏系统、储能系统、微网系统、能源互联网,E-mail:zhangyh@sungrowpower.com

Optimal allocation strategy of wind hydrogen and ammonia storage under multi-factor constraints of source-storage-load cooperation

Yanhu ZHANG2(), Hui WANG1(), Shaokun ZOU2, An WEI2, Dejun LUO2, Youhua JIANG1()   

  1. 1.College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China
    2.Sungrow Renewables Development Co. , Ltd. , Hefei 230088, Anhui, China
  • Received:2024-12-30 Revised:2025-01-25 Online:2025-06-28 Published:2025-06-27
  • Contact: Hui WANG, Youhua JIANG E-mail:zhangyh@sungrowpower.com;ghostins0311@163.com;jyhua0306@sina.com

摘要:

风电制氢、制氨是我国“三北”地区解决风电就地消纳问题的重要手段,为提高风电制氢合成氨系统稳定运行情况下的经济性,本工作提出了一种多因素约束下源-储-荷协同的风储氢氨优化配置策略。首先通过分析制氢设备功率、储能配置比例、储氢罐配置容量、电网取电电量、系统年停机次数、年产氢量、产氨量以及液氨成本等多种制约因素,构建了风电制氢合成氨系统模型及其不同工况的经济性关系。其次,以经济性目标模型边界为切入点,采用源-储-荷协同的风储氢氨优化协同策略,优选出电网取电、储氢罐储能及蓄电池储能最佳出力点,以便适应不同工作场景的经济性最优配置目标。最后,以乌拉特中旗典型年风速数据及其现场实际为基准,构建了4种不同场景下不同优化策略的经济性对比。结果表明:本工作所提控制策略在各个场景均能很好适应现场需求,达到单位氨成本最低,系统产量最多,停机次数最少,投资回收期最短的效果。本研究有助于增强风电的就地消纳能力和系统自平衡能力,为提升源-储-荷协同的风储氢氨制备工艺及经济性提供工程借鉴和参考。

关键词: 风电, 绿电制氨, 经济性最优, 系统配置

Abstract:

Hydrogen and ammonia production from wind power offers a practical solution for addressing the on-site consumption challenges of wind energy in China's "Three North" region. To enhance the economic performance and operational stability of wind-hydrogen-ammonia synthesis systems, this study proposes an optimal allocation strategy that considers multi-factor constraints in source-storage-load coordination. First, a system model for wind turbine-driven hydrogen and ammonia production is established, incorporating variables such as hydrogen production equipment power, energy storage configuration ratio, hydrogen storage tank capacity, grid electricity consumption, annual shutdown frequency, hydrogen and ammonia outputs, and liquid ammonia costs under different operational conditions. Second, an economic objective model is formulated as a boundary condition to guide a source-storage-load collaborative optimization strategy. This strategy identifies optimal output levels for grid electricity extraction, hydrogen storage, and battery energy storage to achieve cost-effective configurations across different scenarios. Finally, using typical annual wind speed data from Urad Middle Banner as a benchmark, an economic comparison is conducted across four working scenarios. Results demonstrate that the proposed control strategy effectively meets field demands, achieving the lowest unit ammonia cost, maximum system output, minimal downtime, and the shortest payback period. This study enhances the local consumption and self-balancing capabilities of wind power systems and offers engineering insights for improving the economic viability of hydrogen and ammonia production based on coordinated source-storage-load operation.

Key words: wind power, green electricity ammonia production, optimal economic performance, system configuration

中图分类号: