储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3100-3109.doi: 10.19799/j.cnki.2095-4239.2025.0132

• 储能材料与器件 • 上一篇    

非均匀泡沫铜强化相变材料蓄热特性的数值分析

袁艳平1(), 高启发2, 张楠2, 孙钦荣1   

  1. 1.重庆科技大学土木工程与建筑学院,重庆 401331
    2.西南交通大学机械工程学院,四川 成都 610031
  • 收稿日期:2025-02-13 修回日期:2025-03-08 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 袁艳平 E-mail:ypyuan@home.swjtu.edu.cn
  • 作者简介:袁艳平(1973—),男,博士后,教授,研究方向为相变储能,E-mail:ypyuan@home.swjtu.edu.cn
  • 基金资助:
    重庆市自然科学基金(CSTB2022NSCQ-MSX0604)

Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials

Yanping YUAN1(), Qifa GAO2, Nan ZHANG2, Qinrong SUN1   

  1. 1.School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China
    2.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Received:2025-02-13 Revised:2025-03-08 Online:2025-08-28 Published:2025-08-18
  • Contact: Yanping YUAN E-mail:ypyuan@home.swjtu.edu.cn

摘要:

泡沫铜的高导热可以强化相变材料的导热传热,但其孔隙结构会阻碍相变材料的对流传热。为了优化其对相变材料的传热强化效能,本工作提出构建梯度孔隙的泡沫铜优化其对相变材料传热特性,并通过数值仿真方法研究了泡沫铜孔隙梯度方向和跨度对相变材料传热的影响。结果表明,一维水平方向梯度均可以强化相变材料的传热,正向梯度的传热速率随孔隙跨度的增加而增加,而负向梯度的传热速率随孔隙跨度的增加而降低,在负向4%的跨度下最大提高了5.8%。一维垂直方向梯度下,正向梯度表现出较好的强化效果,且在跨度10%时传热速率最大提高了11.5%。二维梯度孔隙传热特性研究结果显示,底部设置较低的孔隙率可以增加传热速率,最大提高了5.5%。综合发现,一维垂直正向梯度泡沫铜在10%的孔隙跨度下具有更好的强化效果。

关键词: 相变材料, 泡沫铜, 梯度设计, 相变传热, 数值仿真

Abstract:

Copper foam, owing to its high thermal conductivity, enhances the conductive heat transfer of phase change materials (PCMs); however, its porous structure can inhibit convective heat transfer. To optimize the overall heat transfer enhancement, this study proposes the use of copper foam with a gradient-porosity structure to improve the thermal performance of PCMs. Numerical simulations were conducted to investigate the influence of gradient direction and porosity span on the heat transfer behavior. The results indicate that one-dimensional horizontal gradient porosity improves heat transfer, with the heat transfer rate increasing with porosity span for positive gradients and decreasing for negative gradients. The maximum improvement observed was 5.8% for a negative gradient span of 4%. For one-dimensional vertical gradients, positive gradients yielded superior enhancement, with a maximum increase of 11.5% at a 10% span. In the case of two-dimensional gradients, placing lower porosity at the bottom led to improved heat transfer performance, with a maximum increase of 5.5%. Overall, vertically oriented one-dimensional positive gradient copper foam with a 10% porosity span demonstrated the most effective heat transfer enhancement.

Key words: phase change materials, copper foam, design of gradient, phase change heat transfer, numerical simulation

中图分类号: