[1] |
GE R H, LI Q, LI C, et al. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system[J]. Renewable Energy, 2022, 187: 829-843. DOI: 10.1016/j.renene.2022.01.097.
|
[2] |
ZUO H Y, ZHOU Y, WU M Y, et al. Development and numerical investigation of parallel combined sensible-latent heat storage unit with intermittent flow for concentrated solar power plants[J]. Renewable Energy, 2021, 175: 29-43. DOI: 10.1016/j.renene. 2021.04.092.
|
[3] |
张云峰, 张学文, 钟威, 等. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. DOI: 10.19799/j.cnki.2095-4239.2023.0843.
|
|
ZHANG Y F, ZHANG X W, ZHONG W, et al. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy[J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. DOI: 10.19799/j.cnki.2095-4239.2023.0843.
|
[4] |
RATHOD M K, BANERJEE J. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092. DOI: 10.1016/j.applthermaleng.2014.10.074.
|
[5] |
YANG X H, XU F F, WANG X Y, et al. Solidification in a shell-and-tube thermal energy storage unit filled with longitude fins and metal foam: A numerical study[J]. Energy and Built Environment, 2023, 4(1): 64-73. DOI: 10.1016/j.enbenv.2021.08.002.
|
[6] |
柴进, 王军, 倪奇强. 纳米颗粒协同肋片强化相变材料传热性能试验[J]. 储能科学与技术, 2022, 11(10): 3161-3170. DOI: 10.19799/j.cnki.2095-4239.2022.0021.
|
|
CHAI J, WANG J, NI Q Q. Experiment on heat transfer performance of phase change materials strengthened by nanoparticles and fins[J]. Energy Storage Science and Technology, 2022, 11(10): 3161-3170. DOI: 10.19799/j.cnki.2095-4239.2022.0021.
|
[7] |
XIAO X, JIA H W, WEN D S, et al. Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles[J]. Energy and Built Environment, 2023, 4(1): 74-85. DOI: 10.1016/j.enbenv.2021.08.003.
|
[8] |
代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki.2095-4239.2024.0449.
|
|
DAI J L, LI G, CAO Y T, et al. Enhancing phase change heat storage performance of paraffin using porous metal foam[J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki.2095-4239.2024.0449.
|
[9] |
XU Y, ZHENG Z J, CHEN S, et al. Parameter analysis and fast prediction of the optimum eccentricity for a latent heat thermal energy storage unit with phase change material enhanced by porous medium[J]. Applied Thermal Engineering, 2021, 186: 116485. DOI: 10.1016/j.applthermaleng.2020.116485.
|
[10] |
ZHANG Z L, ZHANG N, YUAN Y P, et al. Investigations on transient thermal performance of phase change materials embedded in metal foams for latent heat thermal energy storage[J]. International Journal of Energy Research, 2021, 45(15): 20763-20782. DOI: 10.1002/er.7137.
|
[11] |
TIAN W, DANG S, LIU G, et al. Thermal transport in phase change materials embedded in metal foam: Evaluation on inclination configuration[J]. Journal of Energy Storage, 2021, 33: 102166. DOI: 10.1016/j.est.2020.102166.
|
[12] |
YING Q F, WANG H, LICHTFOUSE E. Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials[J]. Applied Thermal Engineering, 2023, 229: 120573. DOI: 10.1016/j.applthermaleng.2023.120573.
|
[13] |
JOSHI V, RATHOD M K. Constructal enhancement of thermal transport in metal foam-PCM composite-assisted latent heat thermal energy storage system[J]. Numerical Heat Transfer, Part A: Applications, 2019, 75(6): 413-433. DOI: 10.1080/10407782. 2019.1599270.
|
[14] |
XU Y, REN Q L, ZHENG Z J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. DOI: 10.1016/j.apenergy.2017.02.019.
|
[15] |
LI X Y, DUAN J T, SIMON T, et al. Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management[J]. Applied Energy, 2021, 298: 117203. DOI: 10.1016/j.apenergy.2021.117203.
|
[16] |
朱孟帅, 张华, 闫勤学, 等. 泡沫金属填充率对相变材料强化换热的机理研究[J]. 制冷学报, 2021, 42(5): 127-133. DOI: 10.3969/j.issn. 0253-4339.2021.05.127.
|
|
ZHU M S, ZHANG H, YAN Q X, et al. Study on the effect of foamed metal copper filling ratio on the enhanced heat transfer mechanism of phase change materials[J]. Journal of Refrigeration, 2021, 42(5): 127-133. DOI: 10.3969/j.issn.0253-4339.2021.05.127.
|
[17] |
HU C Z, LI H Y, TANG D W, et al. Pore-scale investigation on the heat-storage characteristics of phase change material in graded copper foam[J]. Applied Thermal Engineering, 2020, 178: 115609. DOI: 10.1016/j.applthermaleng.2020.115609.
|
[18] |
YANG X H, WANG W B, YANG C, et al. Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 60-69. DOI: 10.1016/j.ijheatmasstransfer.2016.03.023.
|
[19] |
YANG X H, WEI P, WANG X Y, et al. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam[J]. Applied Energy, 2020, 268: 115019. DOI: 10.1016/j.apenergy.2020.115019.
|
[20] |
WANG Z F, WU J N, LEI D Q, et al. Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application[J]. Applied Energy, 2020, 261: 114472. DOI: 10.1016/j.apenergy.2019.114472.
|
[21] |
MENG X, LIU S H, ZOU J L, et al. Inclination angles on the thermal behavior of Phase-Change Material (PCM) in a cavity filled with copper foam partly[J]. Case Studies in Thermal Engineering, 2021, 25: 100944. DOI: 10.1016/j.csite.2021.100944.
|
[22] |
HUANG S, LU J, LI Y C. Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units[J]. Energy, 2022, 239: 122489. DOI: 10.1016/j.energy.2021.122489.
|
[23] |
GHAHREMANNEZHAD A, XU H J, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. DOI: 10.1016/j.applthermaleng.2020.115731.
|
[24] |
YANG X H, YU J B, GUO Z X, et al. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube[J]. Applied Energy, 2019, 239: 142-156. DOI: 10.1016/j.apenergy.2019.01.075.
|
[25] |
MAHDI J M, MOHAMMED H I, HASHIM E T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system[J]. Applied Energy, 2020, 257: 113993. DOI: 10.1016/j.apenergy. 2019.113993.
|
[26] |
NIE C D, LIU J W, DENG S X. Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120652. DOI: 10.1016/j.ijheatmasstransfer.2020.120652.
|
[27] |
CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565. DOI: 10.1115/1.1287793.
|
[28] |
FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14): 2781-2789. DOI: 10.1016/S0009-2509(02)00166-5.
|
[29] |
CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Boulder: University of Colorado at Boulder, 1998.
|
[30] |
BHATTACHARYA A, CALMIDI V V, MAHAJAN R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. DOI: 10.1016/S0017-9310(01)00220-4.
|
[31] |
ŽUKAUSKAS A. Heat transfer from tubes in crossflow[J]. Advances in Heat Transfer, 1972, 8: 93-160. DOI: 10.1016/S0065-2717(08)70038-8.
|
[32] |
BOOMSMA K, POULIKAKOS D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836. DOI: 10.1016/S0017-9310(00)00123-X.
|
[33] |
POURAKABAR A, ALI RABIENATAJ DARZI A. Enhancement of phase change rate of PCM in cylindrical thermal energy storage[J]. Applied Thermal Engineering, 2019, 150: 132-142. DOI: 10.1016/j.applthermaleng.2019.01.009.
|
[34] |
WEI X Y, ZHANG N, ZHANG Z L, et al. Melting evaluation of phase change materials impregnated into cascaded metal foams with regionalized enhancement[J]. Journal of Thermal Science, 2025, 34(1): 223-241. DOI: 10.1007/s11630-024-2064-3.
|