储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3824-3838.doi: 10.19799/j.cnki.2095-4239.2025.0310
赫亚庆1(
), 王维庆1(
), 王浩成2, 池映天3, 李佳蓉3, 何山1, 刘博文1, 张新燕1
收稿日期:2025-03-31
修回日期:2025-04-09
出版日期:2025-10-28
发布日期:2025-10-20
通讯作者:
王维庆
E-mail:2363423816@qq.com;wwq59@xju.edu.cn
作者简介:赫亚庆(1990—),男,博士研究生,研究方向为面向新能源消纳的高温电制氢系统建模与变负荷运行优化,E-mail:2363423816@qq.com;
基金资助:
Yaqing HE1(
), Weiqing WANG1(
), Haocheng WANG2, Yingtian CHI3, Jiarong LI3, Shan HE1, Bowen LIU1, Xinyan ZHANG1
Received:2025-03-31
Revised:2025-04-09
Online:2025-10-28
Published:2025-10-20
Contact:
Weiqing WANG
E-mail:2363423816@qq.com;wwq59@xju.edu.cn
摘要:
针对风光资源随机波动导致绿电消纳困难、常规电解水制氢效率低、H2储运成本高等问题,本工作从固体氧化物电池(solid oxide cells,SOC)特性出发,提出一种含掺氢天然气管网的SOC氢储能电热气多能耦合优化模型。通过构建含风电、光伏、供热系统、SOC氢储能及掺氢输运系统的动态耦合模型,以绿电消纳率、系统经济性与碳减排为多目标,综合考虑绿电出力不确定约束、电热气能量守恒约束以及H2制储输系统运行约束,通过整合优化得出最优解。对新疆某园区(年弃风弃光量11520 MWh)电热气多能流能源循环系统进行仿真实验,结果表明:SOC氢储能系统可实现绿电100%全消纳,较常规储能(蓄电池+储热器)年运行成本降低214万元,碳排放减少1068 t。通过热电联产(combined heat and power,CHP)电热比系数优化,SOC电解效率提升至85%,余热利用率达90%,实现了电解水反应驱动力最大化。掺氢天然气管网在30%体积掺混比例下,天然气体积消耗减少23%,系统总成本降低超50%,管网摩擦压降减小,节点气压提升,输运能力显著增强,投资回报率大幅提高,为大规模消纳可再生能源、实现氢气高效经济长距离安全输送提供参考。
中图分类号:
赫亚庆, 王维庆, 王浩成, 池映天, 李佳蓉, 何山, 刘博文, 张新燕. 基于电热气多能耦合的SOC绿电制储运氢系统优化研究[J]. 储能科学与技术, 2025, 14(10): 3824-3838.
Yaqing HE, Weiqing WANG, Haocheng WANG, Yingtian CHI, Jiarong LI, Shan HE, Bowen LIU, Xinyan ZHANG. Optimization of an SOC green hydrogen production storage and transportation system based on electricity-heat-gas multienergy coupling[J]. Energy Storage Science and Technology, 2025, 14(10): 3824-3838.
| [1] | 熊阳阳, 于艾清, 王育飞, 等. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. |
| XIONG Y Y, YU A Q, WANG Y F, et al. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties[J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. | |
| [2] | 林旗力, 陈珍, 王晓虎, 等. 基于"电-氢-电" 过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. DOI: 10. 19799/j.cnki.2095-4239.2023.0955. |
| LIN Q L, CHEN Z, WANG X H, et al. Economic analysis of large-scale hydrogen energy storage based on the "electric-hydrogen-electric" process[J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. DOI: 10.19799/j.cnki.2095-4239. 2023. 0955. | |
| [3] | PAN G S, GU W, LU Y P, et al. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2662-2676. DOI: 10.1109/TSTE.2020.2970078. |
| [4] | XING X T, LIN J, WAN C, et al. Model predictive control of LPC-looped active distribution network with high penetration of distributed generation[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1051-1063. DOI: 10.1109/TSTE. 2016. 2647259. |
| [5] | XING X T, LIN J, SONG Y H, et al. Intermodule management within a large-capacity high-temperature power-to-hydrogen plant[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1432-1442. DOI: 10.1109/TEC.2020.2978552. |
| [6] | 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. DOI: 10.19705/j.cnki.issn2096-5125.2018.03.001. |
| XING X T, LIN J, SONG Y H, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. DOI: 10. 19705/j.cnki.issn2096-5125.2018.03.001. | |
| [7] | 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. DOI: 10. 13334/j.0258-8013.pcsee.212956. |
| JIANG Y W, YANG G M, CHEN Y X, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. DOI: 10.13334/j.0258-8013.pcsee.212956. | |
| [8] | 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634. |
| GAO C W, WANG W, CHEN T. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634. | |
| [9] | 刘毓伶, 赵兴勇, 刘立. 含信息间隙决策理论的电热气联合系统优化调度[J]. 电力系统及其自动化学报, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440. |
| LIU Y L, ZHAO X Y, LIU L. Optimization and scheduling of power, heat and gas combination system based on information gap decision theory[J]. Proceedings of the CSU-EPSA, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440. | |
| [10] | 张大海, 贠韫韵, 王小君, 等. 考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J]. 电力系统自动化, 2021, 45(19): 33-42. |
| ZHANG D H, YUN Y Y, WANG X J, et al. Economic dispatch of integrated electricity-heat-gas energy system considering generalized energy storage and concentrating solar power plant[J]. Automation of Electric Power Systems, 2021, 45(19): 33-42. | |
| [11] | 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307. |
| LI J R, LIN J, XING X T, et al. Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307. | |
| [12] | DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al. Dynamic modelling of alkaline self-pressurized electrolyzers: A phenomenological-based semiphysical approach[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22394-22407. DOI: 10.1016/j.ijhydene.2020.06.038. |
| [13] | 林俐, 郑馨姚, 周龙文. 基于燃氢燃气轮机的风光火储多能互补优化调度[J]. 电网技术, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059. |
| LIN L, ZHENG X Y, ZHOU L W. Wind-PV-thermal-storage multi-energy complementary optimal dispatching based on hydrogen gas turbine[J]. Power System Technology, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059. | |
| [14] | 李荦一, 韩莹, 李奇, 等. 计及效率特性的电-氢混合储能直流微网经济下垂控制策略[J]. 电力系统保护与控制, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944. |
| LI L Y, HAN Y, LI Q, et al. Economic droop control strategy of a hybrid electric-hydrogen DC microgrid considering efficiency characteristics[J]. Power System Protection and Control, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944. | |
| [15] | 高超, 姚秀萍, 刘日新, 等. 基于自适应控制的风光制储氢协调运行策略研究[J]. 太阳能学报, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489. |
| GAO C, YAO X P, LIU R X, et al. Research on coordinated operation strategy of wind-solar hydrogen production and storage based on adaptive control[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489. | |
| [16] | 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655. |
| ZHENG B, BAI Z, YUAN Y, et al. Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655. | |
| [17] | LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518. DOI: 10.1016/j.ijhydene.2019.05.183. |
| [18] | CHI Y T, QIU Y W, LIN J, et al. A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method[J]. International Journal of Hydrogen Energy, 2020, 45(58): 32949-32971. DOI: 10.1016/j.ijhydene.2020.09.116. |
| [19] | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468. |
| CUI Y, YAN S, ZHONG W Z, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468. | |
| [20] | 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327. |
| ZHANG Y, PENG Y G, WEI W. Coordination control for pv, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327. | |
| [21] | 王雅倩, 任娜, 徐宗磊, 等. 电/热/气多能转换的可逆固体氧化物燃料电池信息物理融合建模与仿真[J]. 电网技术, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008. |
| WANG Y Q, REN N, XU Z L, et al. Cyber-physical system modeling and simulation of power-heat-gas multi-energy conversion for reversible solid oxide fuel cell[J]. Power System Technology, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008. | |
| [22] | FU C, LIN J, SONG Y H, et al. Optimal operation of an integrated energy system incorporated with HCNG distribution networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2141-2151. DOI: 10.1109/TSTE.2019.2951701. |
| [23] | FRANK E, GORRE J, RUOSS F, et al. Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems[J]. Applied Energy, 2018, 218: 217-231. DOI: 10.1016/j.apenergy. 2018.02.105. |
| [24] | 蔡国伟, 西禹霏, 杨德友, 等. 基于风-氢的气电热联合系统模型的经济性能分析[J]. 太阳能学报, 2019, 40(5): 1465-1471. DOI: 10. 19912/j.0254-0096.2019.05.039. |
| CAI G W, XI Y F, YANG D Y, et al. Economic performance analysis of model of combined gas-heat-power system based on wind-hydrogen[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1465-1471. DOI: 10.19912/j.0254-0096.2019.05.039. | |
| [25] | 严思韵, 周登极. 综合能源天然气网混氢输运的仿真与调度综述[J]. 中国电机工程学报, 2022, 42(24): 8816-8832. DOI: 10.13334/j. 0258-8013.pcsee.211277. |
| YAN S Y, ZHOU D J. Review of simulation and scheduling of hydrogen-blended transportation in natural gas network of integrated energy system[J]. Proceedings of the CSEE, 2022, 42(24): 8816-8832. DOI: 10.13334/j.0258-8013.pcsee.211277. | |
| [26] | 杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47(12): 76-85. |
| YANG Z J, TIAN X Q, WU W L, et al. Optimal capacity configuration of wind-hydrogen-HCNG coupled network considering combined electrolyzer operation[J]. Automation of Electric Power Systems, 2023, 47(12): 76-85. | |
| [27] | 许彤, 吴浩志, 陈林, 等. 基于FLUENT模拟的储罐掺氢装置掺混过程及掺氢比对管道运行参数影响研究[J]. 力学与实践, 2023, 45(2): 314-324. |
| XU T, WU H Z, CHEN L, et al. Study of blending process and hydrogen ratio for the hydrogen blending device in the tank on the pipeline operation parameters by fluent simulations[J]. Mechanics in Engineering, 2023, 45(2): 314-324. | |
| [28] | 邢学韬. 面向新能源消纳的高温电制氢系统建模与变负载运行优化[D]. 北京: 清华大学, 2020.XING X T. Modeling and load-varying operation of a high-temperature power-to-hydrogen system for renewable integration[D]. Beijing: Tsinghua University, 2020. |
| [29] | 赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. |
| HE Y Q, ZHANG X Y, WANG W Q, et al. Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. | |
| [30] | 池映天. 面向灵活调节的固体氧化物电堆建模与控制[D]. 北京: 清华大学, 2023.CHI Y T. Modeling and control of solid oxide cell stacks for flexible regulation[D]. Beijing: Tsinghua University, 2023. |
| [1] | 孙浩, 邢作霞, 吴维宁, 李明奇, 朱志, 王高涵. 计及电力市场交易机制的风-光-储-氢混合电厂配置策略研究[J]. 储能科学与技术, 2025, 14(7): 2801-2812. |
| [2] | 张彦虎, 汪慧, 邹绍琨, 韦安, 罗德俊, 江友华. 多因素约束下源-储-荷协同的风储氢氨优化配置策略研究[J]. 储能科学与技术, 2025, 14(6): 2558-2566. |
| [3] | 李明, 尹文良, 李勇康, 孙晨业, 陈佳佳. 多源耦合不确定性下含电氢储能的微电网低碳容量优化配置研究[J]. 储能科学与技术, 2025, 14(5): 1969-1981. |
| [4] | 林旗力, 陈珍, 王晓虎, 戚宏勋, 王伟. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. |
| [5] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
| [6] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
| [7] | 邢学奇, 宋鹏翔, 申爱景, 鲁仰辉, 陈俊, 刘伟. 电解水制氢用阴离子交换膜研究进展[J]. 储能科学与技术, 2024, 13(11): 3856-3870. |
| [8] | 胡健, 任育杰, 杜金魁, 刘元, 刘丹. 含相变储能的风/光/热电联产综合能源系统优化调度[J]. 储能科学与技术, 2023, 12(3): 968-975. |
| [9] | 陶飞跃, 王焕然, 李瑞雄, 赵静, 葛刚强, 贺新, 陈昊. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
| [10] | 周晗, 李正宇, 徐俊辉, 陈留平, 龚领会. 我国可再生能源与盐穴氢储能技术耦合发电的分析与展望[J]. 储能科学与技术, 2022, 11(12): 4059-4066. |
| [11] | 王晓露, 郭欢, 张华良, 徐玉杰, 刘英军, 陈海生. 火电厂热电联产机组与压缩空气储能集成系统能量耦合特性分析[J]. 储能科学与技术, 2021, 10(2): 598-610. |
| [12] | 杨珍帅, 王焕然, 李瑞雄, 陈昊, 张严, 李智搏, 姚尔人. 内燃机增压-压缩空气储能冷热电联产系统[J]. 储能科学与技术, 2020, 9(6): 1917-1925. |
| [13] | 张健, 徐玉杰, 李斌, 陈海生, 纪律, 郭丛. 分布式热电联产系统装机容量及运行策略分析[J]. 储能科学与技术, 2019, 8(1): 83-91. |
| [14] | 霍现旭, 王靖, 蒋菱, 徐青山. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2): 197-203. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||