[1] |
熊阳阳, 于艾清, 王育飞, 等. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958.
|
|
XIONG Y Y, YU A Q, WANG Y F, et al. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties[J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958.
|
[2] |
林旗力, 陈珍, 王晓虎, 等. 基于"电-氢-电" 过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. DOI: 10. 19799/j.cnki.2095-4239.2023.0955.
|
|
LIN Q L, CHEN Z, WANG X H, et al. Economic analysis of large-scale hydrogen energy storage based on the "electric-hydrogen-electric" process[J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. DOI: 10.19799/j.cnki.2095-4239. 2023. 0955.
|
[3] |
PAN G S, GU W, LU Y P, et al. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2662-2676. DOI: 10.1109/TSTE.2020.2970078.
|
[4] |
XING X T, LIN J, WAN C, et al. Model predictive control of LPC-looped active distribution network with high penetration of distributed generation[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1051-1063. DOI: 10.1109/TSTE. 2016. 2647259.
|
[5] |
XING X T, LIN J, SONG Y H, et al. Intermodule management within a large-capacity high-temperature power-to-hydrogen plant[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1432-1442. DOI: 10.1109/TEC.2020.2978552.
|
[6] |
邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. DOI: 10.19705/j.cnki.issn2096-5125.2018.03.001.
|
|
XING X T, LIN J, SONG Y H, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. DOI: 10. 19705/j.cnki.issn2096-5125.2018.03.001.
|
[7] |
江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. DOI: 10. 13334/j.0258-8013.pcsee.212956.
|
|
JIANG Y W, YANG G M, CHEN Y X, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. DOI: 10.13334/j.0258-8013.pcsee.212956.
|
[8] |
高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634.
|
|
GAO C W, WANG W, CHEN T. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634.
|
[9] |
刘毓伶, 赵兴勇, 刘立. 含信息间隙决策理论的电热气联合系统优化调度[J]. 电力系统及其自动化学报, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440.
|
|
LIU Y L, ZHAO X Y, LIU L. Optimization and scheduling of power, heat and gas combination system based on information gap decision theory[J]. Proceedings of the CSU-EPSA, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440.
|
[10] |
张大海, 贠韫韵, 王小君, 等. 考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J]. 电力系统自动化, 2021, 45(19): 33-42.
|
|
ZHANG D H, YUN Y Y, WANG X J, et al. Economic dispatch of integrated electricity-heat-gas energy system considering generalized energy storage and concentrating solar power plant[J]. Automation of Electric Power Systems, 2021, 45(19): 33-42.
|
[11] |
李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307.
|
|
LI J R, LIN J, XING X T, et al. Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307.
|
[12] |
DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al. Dynamic modelling of alkaline self-pressurized electrolyzers: A phenomenological-based semiphysical approach[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22394-22407. DOI: 10.1016/j.ijhydene.2020.06.038.
|
[13] |
林俐, 郑馨姚, 周龙文. 基于燃氢燃气轮机的风光火储多能互补优化调度[J]. 电网技术, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059.
|
|
LIN L, ZHENG X Y, ZHOU L W. Wind-PV-thermal-storage multi-energy complementary optimal dispatching based on hydrogen gas turbine[J]. Power System Technology, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059.
|
[14] |
李荦一, 韩莹, 李奇, 等. 计及效率特性的电-氢混合储能直流微网经济下垂控制策略[J]. 电力系统保护与控制, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944.
|
|
LI L Y, HAN Y, LI Q, et al. Economic droop control strategy of a hybrid electric-hydrogen DC microgrid considering efficiency characteristics[J]. Power System Protection and Control, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944.
|
[15] |
高超, 姚秀萍, 刘日新, 等. 基于自适应控制的风光制储氢协调运行策略研究[J]. 太阳能学报, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489.
|
|
GAO C, YAO X P, LIU R X, et al. Research on coordinated operation strategy of wind-solar hydrogen production and storage based on adaptive control[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489.
|
[16] |
郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655.
|
|
ZHENG B, BAI Z, YUAN Y, et al. Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655.
|
[17] |
LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518. DOI: 10.1016/j.ijhydene.2019.05.183.
|
[18] |
CHI Y T, QIU Y W, LIN J, et al. A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method[J]. International Journal of Hydrogen Energy, 2020, 45(58): 32949-32971. DOI: 10.1016/j.ijhydene.2020.09.116.
|
[19] |
崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468.
|
|
CUI Y, YAN S, ZHONG W Z, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468.
|
[20] |
张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327.
|
|
ZHANG Y, PENG Y G, WEI W. Coordination control for pv, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327.
|
[21] |
王雅倩, 任娜, 徐宗磊, 等. 电/热/气多能转换的可逆固体氧化物燃料电池信息物理融合建模与仿真[J]. 电网技术, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008.
|
|
WANG Y Q, REN N, XU Z L, et al. Cyber-physical system modeling and simulation of power-heat-gas multi-energy conversion for reversible solid oxide fuel cell[J]. Power System Technology, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008.
|
[22] |
FU C, LIN J, SONG Y H, et al. Optimal operation of an integrated energy system incorporated with HCNG distribution networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2141-2151. DOI: 10.1109/TSTE.2019.2951701.
|
[23] |
FRANK E, GORRE J, RUOSS F, et al. Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems[J]. Applied Energy, 2018, 218: 217-231. DOI: 10.1016/j.apenergy. 2018.02.105.
|
[24] |
蔡国伟, 西禹霏, 杨德友, 等. 基于风-氢的气电热联合系统模型的经济性能分析[J]. 太阳能学报, 2019, 40(5): 1465-1471. DOI: 10. 19912/j.0254-0096.2019.05.039.
|
|
CAI G W, XI Y F, YANG D Y, et al. Economic performance analysis of model of combined gas-heat-power system based on wind-hydrogen[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1465-1471. DOI: 10.19912/j.0254-0096.2019.05.039.
|
[25] |
严思韵, 周登极. 综合能源天然气网混氢输运的仿真与调度综述[J]. 中国电机工程学报, 2022, 42(24): 8816-8832. DOI: 10.13334/j. 0258-8013.pcsee.211277.
|
|
YAN S Y, ZHOU D J. Review of simulation and scheduling of hydrogen-blended transportation in natural gas network of integrated energy system[J]. Proceedings of the CSEE, 2022, 42(24): 8816-8832. DOI: 10.13334/j.0258-8013.pcsee.211277.
|
[26] |
杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47(12): 76-85.
|
|
YANG Z J, TIAN X Q, WU W L, et al. Optimal capacity configuration of wind-hydrogen-HCNG coupled network considering combined electrolyzer operation[J]. Automation of Electric Power Systems, 2023, 47(12): 76-85.
|
[27] |
许彤, 吴浩志, 陈林, 等. 基于FLUENT模拟的储罐掺氢装置掺混过程及掺氢比对管道运行参数影响研究[J]. 力学与实践, 2023, 45(2): 314-324.
|
|
XU T, WU H Z, CHEN L, et al. Study of blending process and hydrogen ratio for the hydrogen blending device in the tank on the pipeline operation parameters by fluent simulations[J]. Mechanics in Engineering, 2023, 45(2): 314-324.
|
[28] |
邢学韬. 面向新能源消纳的高温电制氢系统建模与变负载运行优化[D]. 北京: 清华大学, 2020.XING X T. Modeling and load-varying operation of a high-temperature power-to-hydrogen system for renewable integration[D]. Beijing: Tsinghua University, 2020.
|
[29] |
赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483.
|
|
HE Y Q, ZHANG X Y, WANG W Q, et al. Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483.
|
[30] |
池映天. 面向灵活调节的固体氧化物电堆建模与控制[D]. 北京: 清华大学, 2023.CHI Y T. Modeling and control of solid oxide cell stacks for flexible regulation[D]. Beijing: Tsinghua University, 2023.
|