| [1] |
孟庆飞, 杨睿, 金成龙, 等. 铬氧化物作为高容量锂电池正极材料的制备及其性能研究[J]. 储能科学与技术, 2023, 12(10): 3049-3055. DOI: 10.19799/j.cnki.2095-4239.2023.0396.
|
|
MENG Q F, YANG R, JIN C L, et al. Preparation and performance of high-capacity Cr8O21 as a cathode material for lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(10): 3049-3055. DOI: 10.19799/j.cnki.2095-4239.2023.0396.
|
| [2] |
LIU J Y, WANG Z X, LI H, et al. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2675-2678. DOI: 10.1016/j.ssi.2006.05.017.
|
| [3] |
BELT J, UTGIKAR V, BLOOM I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes[J]. Journal of Power Sources, 2011, 196(23): 10213-10221. DOI: 10.1016/j.jpowsour.2011.08.067.
|
| [4] |
FANG Z, YANG Y, ZHENG T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. DOI: 10.1016/j.ensm.2021.08.002.
|
| [5] |
杨睿, 李惠, 孟庆飞, 等. PC基电解液对Li/CrOx一次电池高倍率性能的影响[J]. 物理化学学报, 2024, 40(9): 68-74.
|
|
YANG R, LI H, MENG Q F, et al. Influence of PC-based electrolyte on high-rate performance in Li/CrOx primary battery[J]. Acta Physico-Chimica Sinica, 2024, 40(9): 68-74.
|
| [6] |
LIANG H J, SU M Y, ZHAO X X, et al. Weakly-solvating electrolytes enable ultralow-temperature (-80 ℃) and high-power CFx/Li primary batteries[J]. Science China Chemistry, 2023, 66(7): 1982-1988. DOI: 10.1007/s11426-023-1638-0.
|
| [7] |
何劲作, 闫啸, 张丽娟. 高温锂离子电池用混盐电解液体系[J]. 电池, 2024, 54(2): 165-169. DOI:10.19535/j.1001-1579.2024.02.005.
|
|
HE J Z, YAN X, ZHANG L J. Mixed salt electrolyte system for high-temperature Li-ion battery[J]. Dianchi(Battery Bimonthly), 2024, 54(2): 165-169. DOI:10.19535/j.1001-1579.2024.02.005.
|
| [8] |
ZHOU S Z, LIU X Y, JI W W, et al. Electrolyte design for a high energy density Li/Cr8O21 primary battery in a wide-temperature range[J]. Journal of Power Sources, 2024, 614: 235006. DOI: 10.1016/j.jpowsour.2024.235006.
|
| [9] |
XIAO Z X, WU S Y, REN X Z, et al. Superior high-rate Ni-rich lithium batteries based on fast ion-desolvation and stable solid-electrolyte interphase[J]. Advanced Science, 2025, 12(12): 2413419. DOI: 10.1002/advs.202413419.
|
| [10] |
CHEN X X, LIU G P, FU A, et al. Electrolyte strategy enables high-rate lithium carbon fluoride (Li/CFx) primary batteries in all-climate environments[J]. Advanced Functional Materials, 2025, 35(3): 2413423. DOI: 10.1002/adfm.202413423.
|
| [11] |
XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. DOI: 10.1021/cr500003w.
|
| [12] |
LI Z H, YAO Y X, ZHENG M T, et al. Electrolyte design enables rechargeable LiFePO4/graphite batteries from–80 ℃ to 80 ℃[J]. Angewandte Chemie International Edition, 2025, 64(2): e202409409. DOI: 10.1002/anie.202409409.
|
| [13] |
JIANG Z P, MO J S, LI C, et al. Anion-regulated weakly solvating electrolytes for high-voltage lithium metal batteries[J]. Energy & Environmental Materials, 2023, 6(6): e12440. DOI: 10.1002/eem2. 12440.
|
| [14] |
MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593. DOI: 10.1021/acsenergylett. 9b00822.
|
| [15] |
SHEN C Y, GUAN D C, LIU W C, et al. Synergistic solvent design for fluorine-free electrolytes in high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202503713.
|
| [16] |
XIAO G Y, YANG K, QIU Y, et al. Dielectric-tailored space charge layer and ion coordination structure for high-voltage polymer all-solid-state lithium batteries[J]. Advanced Materials, 2025, 37(20): 2415411. DOI: 10.1002/adma.202415411.
|
| [17] |
FAN Z Y, ZHANG J W, WU L Q, et al. Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries[J]. Chemical Science, 2024, 15(41): 17161-17172. DOI: 10.1039/D4SC05464D.
|
| [18] |
CHEN L, NIAN Q S, RUAN D G, et al. High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2023, 14(5): 1184-1193. DOI: 10.1039/d2sc05723a.
|
| [19] |
LI L Y, WU R Z, MA H C, et al. Toward the high-performance lithium primary batteries by chemically modified fluorinate carbon with δ-MnO2[J]. Small, 2023, 19(26): 2300762. DOI: 10.1002/smll.202300762.
|
| [20] |
程广玉, 刘新伟, 梅悦旎, 等. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. DOI: 10.19799/j.cnki. 2095-4239.2021.0614.
|
|
CHENG G Y, LIU X W, MEI Y N, et al. Capacity fading analysis of lithium-ion battery after high temperature storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. DOI: 10.19799/j.cnki.2095-4239.2021.0614.
|
| [21] |
ZHU Y L, ZHU J G, JIANG B, et al. Insights on the degradation mechanism for large format prismatic graphite/LiFePO4 battery cycled under elevated temperature[J]. Journal of Energy Storage, 2023, 60: 106624. DOI: 10.1016/j.est.2023.106624.
|
| [22] |
KUM K S, SONG M K, KIM Y T, et al. The effect of mixed salts in gel-coated polymer electrolyte for advanced lithium battery[J]. Electrochimica Acta, 2004, 50(2/3): 285-288. DOI: 10.1016/j.electacta.2004.01.094.
|
| [23] |
LUO Z Y, LUO S, YANG M, et al. Revealing the mechano-electrochemical coupling behavior and discharge mechanism of fluorinated carbon cathodes toward high-power lithium primary batteries[J]. Small, 2024, 20(7): 2305980. DOI: 10.1002/smll. 202305980.
|
| [24] |
DU Z J, WOOD D L, BELHAROUAK I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes[J]. Electrochemistry Communications, 2019, 103: 109-113. DOI: 10.1016/j.elecom.2019.04.013.
|