储能科学与技术

• 储能材料与器件 •    

多组分电解液协同效应提升Cr8O21||Li一次电池倍率性能和高温贮存寿命研究

张岩1(), 张红梅2, 廖丽1, 文炫中1, 王明珊1, 李星1()   

  1. 1.西南石油大学,四川 成都 610500
    2.贵州梅岭电源有限公司,贵州 遵义 563003
  • 收稿日期:2025-05-15 修回日期:2025-06-07
  • 通讯作者: 李星 E-mail:2248417088@qq.com;lixing198141@163.com
  • 作者简介:张岩(2001—),男,硕士研究生,从事铬基氧化物电解液研究,E-mail:2248417088@qq.com
  • 基金资助:
    “HY行动”前沿扫描类项目(62402010314)

Synergistic effect of multi-component electrolyte on the rate performance and high temperature storage life of Cr8O21||Li primary battery

Yan Zhang1(), Hongmei Zhang2, Mingshan Wang1, Xing Ling1   

  1. 1.SouthWest Petroleum University, Chengdu 610500, Sichuan, China
    2.Guizhou Meiling Power Sources Co. Ltd, Zunyi 563003, Guizhou, China
  • Received:2025-05-15 Revised:2025-06-07

摘要:

铬氧化物(Cr8O21)一次电池由于其高能量密度和高工作电压等特性,成为航天军事领域的研究热点。然而,一次电池在极端工况下的应用受限于大电流放电能力与高温贮存寿命的固有矛盾,而传统电解液又难以实现二者同步优化。针对这一矛盾,本研究提出多组分电解液协同设计策略:通过高介电常数EC(碳酸乙烯酯)与低黏度EMC(碳酸甲乙酯)复合溶剂优化锂盐解离与离子迁移效率,配合同样高沸点的PC(碳酸丙烯酯)提高电解液热稳定性,并结合LiPF6(六氟磷酸锂)与LiBOB(二草酸硼酸锂)双盐体系调控溶剂化结构并构建含LiF与B-O组分的稳定SEI膜。该设计兼顾高离子电导率、低去溶剂化能垒、高热分解温度及界面钝化能力,突破了单一组分功能局限。实验表明,该体系使Cr8O21||Li一次电池在5C倍率下放电比容量达到商用电解液[LiBF4(四氟硼酸锂)-PC+DME(乙二醇二甲醚)]的1.53倍。同时在60℃下的高温贮存寿命相比商用电解液延长5倍以上,且在60℃贮存720小时后容量保持率仍能达到89%。本研究通过多组分电解液策略为极端环境下高可靠性一次电池的开发提供了电解液设计与界面调控的新范式,对航天器电源系统等特殊场景应用具有重要工程价值。

关键词: Cr8O21, 一次电池, 大电流放电, 高温贮存寿命, 协同效应

Abstract:

Chromium oxide (Cr8O21) primary battery has become a research hotspot in the field of aerospace and military because of its high energy density and high working voltage. However, the application of primary batteries in extreme conditions is limited by the inherent contradiction between high current discharge capacity and high temperature storage life, but the traditional electrolyte is difficult to achieve synchronous optimization of the two. In view of this contradiction, this study proposed a multi-component electrolyte collaborative design strategy: through the high dielectric constant EC (ethylene carbonate) and low viscosity EMC (methyl ethyl carbonate) composite solvent to optimize the lithium salt dissociation and ion migration efficiency, combined with the same high boiling point PC (propylene carbonate) to improve the thermal stability of the electrolyte, and combined with LiPF6 (lithium hexafluorophosphate) and LiBOB (lithium oxalate borate) double salt system to control the solvation structure and construct a stable SEI film containing LiF and B-O components. The design takes into account high ionic conductivity, low desolvation energy barrier, high thermal decomposition temperature and interface passivation ability, breaking through the functional limitations of a single component. The experimental results show that the specific discharge capacity of Cr8O21||Li primary battery at 5C rate is 1.53 times that of commercial electrolyte [LiBF4 (lithium tetrafluoroborate) - PC+DME (ethylene glycol dimethyl ether)]. At the same time, the high temperature storage life at 60℃ is more than 5 times longer than that of commercial storage, and the capacity retention rate reaches 89% after 720 hours of storage at 60℃. This study provides a new paradigm of electrolyte design and interface control for the development of high reliability primary batteries in extreme environments through the multi-component electrolyte strategy, which has important engineering value for the application of spacecraft power system and other special scenarios.

Key words: Cr8O21, Primary battery, High current discharge, High temperature storage life, synergistic effect

中图分类号: