1 |
孟庆飞, 杨睿, 金成龙, 等. 铬氧化物作为高容量锂电池正极材料的制备及其性能研究[J]. 储能科学与技术, 2023, 12(10):3049-3055. Meng Q F, Yang R, Jin C L, et al. Preparation and performance of high-capacity Cr8O21 as a cathode material for lithium batteries[J]. 储能科学与技术, 2023, 12(10): 3049-3055.
|
2 |
Liu J, Wang Z, Li H; Huang X, et al. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. Solid State Ion. 2006, 177((26/32)): 2675–2678.
|
3 |
Belt J, Utgikar V, Bloom I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes[J]. Journal of Power Sources, 2011, 196(23): 10213-10221.
|
4 |
Fang Z, Yang Y, Zheng T, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483.
|
5 |
杨睿, 李惠, 孟庆飞, 等. PC 基电解液对 Li/CrOx 一次电池高倍率性能的影响[J]. 物理化学学报, 2024, 40(9): 2308053. Yang R, Li H, Meng Q F, et al. Influence of PC-based electrolyte on high-rate performance in Li/CrOx primary battery[J]. Acta Physico Chimica Sinica. 2024, 40(9): 2308053-2308053.
|
6 |
Liang H J, Su M Y, Zhao X X, et al. Weakly-solvating electrolytes enable ultralow-temperature(-80℃) and high-power CFx/Li primary batteries[J]. Science China Chemistry,2023,66(7): 1982-1988.
|
7 |
金成龙,孙梦婷,孟庆飞,等. Cr8O21/Li电池宽温电解液的设计与应用[J].储能科学与技术, 2025, 14(4): 1369-1376. JIN C L, SUN M T, MENG Q F, et al. Design and application of wide temperature electrolytes for Cr8O21/Libatteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376
|
8 |
Zhou S Z, Liu X Y, Ji W W, et al. Electrolyte design for a high energy density Li/Cr8O21 primary battery in a wide-temperature range[J]. Journal of Power Sources, 2024, 614: 235006-235006.
|
9 |
Xiao Z X,Wu SY,Ren X Z, et al. Superior High-Rate Ni-Rich Lithium Batteries Based on Fast Ion-Desolvation and Stable Solid-Electrolyte Interphase[J]. Advanced science, 2025, 12(12): e2413419.
|
10 |
Chen X X, Liu G P, Fu A, et al. Electrolyte Strategy Enables High-Rate Lithium Carbon Fluoride (Li/CFx) Primary Batteries in All-Climate Environments[J]. Advanced Functional Materials, 2025, 35(3): 2413423.
|
11 |
Xu Kang. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
|
12 |
Li Z H, Yao X Y, Zheng M T, et al. Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from -80℃ to 80℃[J]. Angew Chem Int Ed, 2024, 64(2): e202409409.
|
13 |
Jiang Z P, Mo J S, Li C, et al. Anion-Regulated Weakly Solvating Electrolytes for High-Voltage Lithium Metal Batteries[J]. Energy Environ Materials. 2023, 6(6): e12440.
|
14 |
Ming J, Cao Z, Li Q, et al. Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries[J]. Acs Energy Letters, 2019, 4(7): 1584-1593.
|
15 |
Shen C, Guan D, Liu W, et a. Synergistic Solvent Design for Fluorine-Free Electrolytes in High-Performance Lithium-Ion Batteries[J]. Advanced Functional Materials, 2025,2503713.
|
16 |
Xiao G Y,Yang K, Qiu Y, et al. Dielectric-Tailored Space Charge Layer and Ion Coordination Structure for High-Voltage Polymer All-Solid-State Lithium Batteries[J]. Advanced materials, 2025, e2415411.
|
17 |
Fan Z, Zhang J, Wu L, et al. Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries[J]. Chemical Science, 2024, 15(41): 17161–17172.
|
18 |
CHEN L, NIAN Q S, RUAN D G, et al. High-safety and highefficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2022, 14(5): 1184-1193.
|
19 |
Li L Y, Wu R Z, Ma H C,et al. Toward the High-Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ-MnO2[J]. Small, 2023, 19(26): 2300762.
|
20 |
广玉, 刘新伟, 梅悦旎, 等. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. Guang Y, Liu X W, Mei Y N,Capacity fading analysis of lithium-ion battery after high temperature storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349.
|
21 |
Zhu Y L, Zhu J G, Jiang B, et al. Insights on the degradation mechanism for large format prismatic graphite/LiFePO4 battery cycled under elevated temperature[J]. Journal of Energy Storage, 2023, 60: 106624.
|
22 |
Kum K S, Song M K, Kim Y T, et al. The effect of mixed salts in gel-coated polymer electrolyte for advanced lithium battery[J]. Electrochimica Acta, 2004, 50(2-3): 285-288.
|
23 |
Luo Z, Luo S, Yang M, et al. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries[J]. Small (Weinheim an der Bergstrasse, Germany), 2024, 20(7): e2305980-e2305980.
|
24 |
Du Z, Wood D L, Belharouak I. Enabling fast charging of high energy density Li-ion cells with high lithium transport electrolytes[J]. Electrochemistry Communications, 2019, 103: 109-113.
|