储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 627-648.doi: 10.12028/j.issn.2095-4239.2016.0020
杜奥冰,柴敬超,张建军,刘志宏,崔光磊
收稿日期:
2016-06-01
修回日期:
2016-06-19
出版日期:
2016-09-01
发布日期:
2016-09-01
通讯作者:
崔光磊,研究员,主要研究方向为电化学能源材料,E-mail:cuigl@qibebt.ac.cn;刘志宏,研究员,主要研究方向为隔膜与电解质材料,E-mail:liuzh@qibebt.ac.cn。
作者简介:
杜奥冰(1992—),男,博士研究生,主要研究方向为锂电池用聚合物电解质,E-mail:duab@qibebt.ac.cn;
基金资助:
DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei
Received:
2016-06-01
Revised:
2016-06-19
Online:
2016-09-01
Published:
2016-09-01
摘要: 目前大规模商业化的锂二次电池普遍采用有机碳酸酯类的液态电解质,易泄露、易燃烧、易爆炸等安全问题限制了该类电解质的进一步应用。全固态聚合物电解质(all-solid-state polymer electrolytes,ASPEs)电池具有安全性能好、能量密度高、工作温度区间广、循环寿命长等优点,是锂离子电池领域的研究热点之一。ASPEs通常还具有优异的力学性能,可以很好地抑制锂金属电极在充放电过程中的枝晶生长,所以在锂金属电池领域也具有十分重要的应用前景。作者综述了研究较多的几种ASPEs体系,包括聚氧化乙烯(PEO)基体系、聚碳酸酯基体系、聚硅氧烷基体系、聚合物锂单离子导体体系。PEO基ASPEs是研究最早且研究最多的一类ASPEs材料,但其高结晶性造成室温Li+迁移困难、离子电导率低等问题,所以研究人员研发了一系列降低PEO结晶度、提升体系离子电导率的改性手段。聚碳酸酯基ASPEs主链结构中含有强极性碳酸酯基团而且室温无定形态,使得锂盐更容易解离,且室温离子电导率一般较PEO基要高,是比较有潜力的PEO基ASPEs替代材料。除了碳链聚合物,玻璃化转变温度较低的聚硅氧烷基ASPEs体系也因为其较高的离子电导率受到研究人员关注。在锂电池充放电过程中,Li+才是有效载荷子,电解质中阴离子的迁移会增加电解质体系的浓差极化,所以阴离子不发生迁移、Li+迁移数接近于1的聚合物锂单离子导体也是一类具有研究价值的ASPEs材料。最后,本综述讨论了全固态聚合物电解质的应用前景及未来发展方向,指出了PEO基体系的研究重点在于发展有机-无机复合体系、聚碳酸酯基体系的研究重点在于发展与其它聚合物的共混体系、聚硅氧烷基体系的研究重点在于增强体系力学性能、聚合物锂单离子导体体系的研究重点在于设计离子电导率更高的新型聚阴离子锂盐。
杜奥冰,柴敬超,张建军,刘志宏,崔光磊. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648.
DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.
[1] QUARTARONE E,MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Reviews,2011,40(5):2525-2540. [2] GOODENOUGH J B,PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society,2013,135(4):1167-1176. [3] HALLINAN J D T,BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research,2013,43:503-525. [4] FARRINGTON G C,BRIANT J L. Fast ionic transport in solids[J]. Science,1979,204(4400):1371-1379. [5] SCROSATI B,CROCE F,PANERO S. Progress in lithium polymer battery R&D[J]. Journal of Power Sources,2001,100(1):93-100. [6] APPETECCHI G,CROCE F,PERSI L,et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta,2000,45(8):1481-1490. [7] BORODIN O,SMITH G D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations[J]. Macromolecules,2006,39(4):1620-1629. [8] BRANDELL D,PRIIMÄGI P,KASEM GI H,et al. Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes:A molecular dynamics study[J]. Electrochimica Acta,2011,57:228-236. [9] DO C,LUNKENHEIMER P,DIDDENS D,et al. Li+ transport in poly(ethylene oxide) based electrolytes:Neutron scattering, dielectric spectroscopy, and molecular dynamics simulations[J]. Physical Review Letters,2013,111(1):429-440. [10] WRIGHT P V. Polymer electrolytes—The early days[J]. Electrochimica Acta,1998,43(10):1137-1143. [11] ZHANG J,YUE L,HU P,et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Scientific Reports,2013, 4(6272):doi:10.1038/srep06272. [12] YOUNG N P,DEVAUX D,KHURANA R,et al. Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries[J]. Solid State Ionics,2014,263:87-94. [13] UNO T,KAWAGUCHI S,KUBO M,et al. Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo (ethylene oxide) unit and butyrolactone unit[J]. Journal of Power Sources,2008,178(2):716-722. [14] HAN P,ZHU Y,LIU J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method[J]. Journal of Power Sources,2015,284:459-465. [15] PORCARELLI L,GERBALDI C,BELLA F,et al. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries[J]. Scientific Reports,2016,6(14):doi:10.1038/srep19892. [16] CROCE F,APPETECCHI G,PERSI L,et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature,1998,394(6692):456-458. [17] QUARTARONE E,MUSTARELLI P,MAGISTRIS A. PEO-based composite polymer electrolytes[J]. Solid State Ionics,1998,110(1):1-14. [18] LI Q,SUN H,TAKEDA Y,et al. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources,2001,94(2):201-205. [19] WESTON J,STEELE B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes[J]. Solid State Ionics,1982,7(1):75-79. [20] WIECZOREK W,RADUCHA D,ZALEWSKA A,et al. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes[J]. The Journal of Physical Chemistry B,1998,102(44):8725-8731. [21] CROCE F,PERSI L,SCROSATI B,et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta,2001,46(16):2457-2461. [22] REICHE A,STEURICH T,SANDNER B,et al. Ion transport in gel electrolytes[J]. Electrochimica Acta,1995,40(13):2153-2157. [23] CAPIGLIA C,YANG J,IMANISHI N,et al. Composite polymer electrolyte:The role of filler grain size[J]. Solid State Ionics,2002,154:7-14. [24] ITOH T,MIYAMURA Y,ICHIKAWA Y,et al. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer[J]. Journal of Power Sources,2003,119:403-408. [25] ITO Y,KAWAKUBO M,UENO M,et al. Carbon anodes for solid polymer electrolyte lithium-ion batteries[J]. Journal of Power Sources,2012,214:84-90. [26] CROCE F,SETTIMI L,SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications,2006,8(2):364-368. [27] ZHANG J,HUANG X,WEI H,et al. Effect of surface modified porous inorganic-organic hybrid polyphosphazene nanotubes on the properties of polyethylene oxide based solid polymer electrolytes[J]. Electrochimica Acta,2010,55(20):5966-5974. [28] ZHANG J,HUANG X,WEI H,et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers[J]. Journal of Solid State Electrochemistry,2012,16(1):101-107. [29] VOIGT N,VAN W,LLEN L. The effect of plastic-crystalline succinonitrile on the electrolyte system PEO︰LiBF4︰Insights from solid state NMR[J]. Solid State Ionics,2014,260:65-75. [30] DERRIEN G,HASSOUN J,SACCHETTI S,et al. Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler[J]. Solid State Ionics,2009,180(23):1267-1271. [31] ANGULAKSHMI N,NAHM K,NAIR J R,et al. Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries[J]. Electrochimica Acta,2013,90:179-185. [32] CHAE H K,SIBERIO-PÉREZ D Y,KIM J,et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527. [33] WANG X L,MEI A,LI M,et al. Polymer composite electrolytes containing ionically active mesoporous SiO2 particles[J]. Journal of Applied Physics,2007,102(5):774-778. [34] YUAN C,LI J,HAN P,et al. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework[J]. Journal of Power Sources,2013,240:653-658. [35] ZHU K,LIU Y,LIU J. A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte[J]. RSC Advances,2014,4(80):42278-42284. [36] GERBALDI C,NAIR J R,KULANDAINATHAN M A,et al. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,2014,2(26):9948-9954. [37] MASOUD E,EL-BELLIHI A A,BAYOUMY W,et al. Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite[J]. Materials Research Bulletin,2013,48(3):1148-1154. [38] KUMAR J,RODRIGUES S J,KUMAR B. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells[J]. Journal of Power Sources,2010,195(1):327-334. [39] HU L,TANG Z,ZHANG Z. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4[J]. Journal of Power Sources,2007,166(1):226-232. [40] PROSINI P P,CAREWSKA M,ALESSANDRINI F,et al. The two-phase battery concept:A new strategy for high performance lithium polymer batteries[J]. Journal of Power Sources,2001,97:786-789. [41] FORSYTH M,TIPTON A,SHRIVER D,et al. Ionic conductivity in poly(diethylene glycol-carbonate)/sodium triflate complexes[J]. Solid State Ionics,1997,99(3):257-261. [42] HOU W H,CHEN C Y,WANG C C. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group[J]. Polymer,2003,44(10):2983-2991. [43] ELM R A M,JANNASCH P. Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(7):2195-2205. [44] JEON J D,KWAK S Y. Pore-filling solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes for rechargeable lithium batteries[J]. Journal of Membrane Science,2006,286(1):15-21. [45] JEON J D,KIM M J,KWAK S Y. Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes[J]. Journal of Power Sources,2006,162(2):1304-1311. [46] KWON S J,KIM D G,SHIM J,et al. Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures[J]. Polymer,2014,55(12):2799-2808. [47] DARENSBOURG D J. Making plastics from carbon dioxide:Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2[J]. Chemical Reviews,2007,107(6):2388-2410. [48] OKUMURA T,NISHIMURA S. Lithium ion conductive properties of aliphatic polycarbonate[J]. Solid State Ionics,2014,267:68-73. [49] TOMINAGA Y,YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chemical Communications,2014,50(34):4448-4450. [50] KIMURA K,YAJIMA M,TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications,2016,66:46-48. [51] ROKICKI G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers[J]. Progress in Polymer Science,2000,25(2):259-342. [52] BARBOSA P,RODRIGUES L,SILVA M M,et al. Characterization of pTMCn LiPF6 solid polymer electrolytes[J]. Solid State Ionics,2011,193(1):39-42. [53] SILVA M M,BARBOSA P,EVANS A,et al. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate[J]. Solid State Sciences,2006,8(11):1318-1321. [54] SUN B,MINDEMARK J,EDSTR M K,et al. Realization of high performance polycarbonate-based Li polymer batteries[J]. Electrochemistry Communications,2015,52:71-74. [55] SUN B,MINDEMARK J,EDSTR M K,et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics,2014,262:738-742. [56] MINDEMARK J,TöRMÄ E,SUN B,et al. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries[J]. Polymer,2015,63:91-98. [57] MINDEMARK J,SUN B,TÖRMÄ E,et al. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J]. Journal of Power Sources,2015,298:166-170. [58] MA X,CHANG P R,YU J,et al. Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites[J]. Carbohydrate Polymers,2008,71(2):229-234. [59] ZHANG J,LIU Z,KONG Q,et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces,2012,5(1):128-134. [60] ZHANG J,ZHAO J,YUE L,et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials,2015,5(24):doi: 10.1002/aenm.201501082. [61] SHIBATA M,KOBAYASHI T,YOSOMIYA R,et al. Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes[J]. European Polymer Journal,2000,36(3):485-490. [62] LIN Y,LI J,LAI Y,et al. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries[J]. RSC Advances,2013,3(27):10722-10730. [63] HOOPER R,LYONS L J,MAPES M K,et al. Highly conductive siloxane polymers[J]. Macromolecules,2001,34(4):931-936. [64] WANG F M,HU C C,LO S C,et al. The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J]. Solid State Ionics,2009,180(4/5):405-411. [65] WALKOWIAK M,SCHROEDER G,GIERCZYK B,et al. New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers[J]. Electrochemistry Communications,2007,9(7):1558-1562. [66] LI J,LIN Y,YAO H,et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem,2014,7(7):1901-1908. [67] ZHANG Z,JIN J,BAUTISTA F,et al. Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes[J]. Solid State Ionics,2004,170(3):233-238. [68] KANG Y,LEE J,SUH D H,et al. A new polysiloxane based cross-linker for solid polymer electrolyte[J]. Journal of Power Sources,2005,146(1/2):391-396. [69] KANG Y,LEE J,LEE J I,et al. Ionic conductivity and electrochemical properties of cross-linked solid polymer electrolyte using star-shaped siloxane acrylate[J]. Journal of Power Sources,2007,165(1):92-96. [70] NODA K,YASUDA T,NISHI Y. Concept of polymer alloy electrolytes:Towards room temperature operation of lithium-polymer batteries[J]. Electrochimica Acta,2004,50(2/3):243-246. [71] OH B,VISSERS D,ZHANG Z,et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. Journal of Power Sources,2003,119(6):442-447. [72] 张恒,郑丽萍,聂进,等. 锂单离子导电固态聚合物电解质[J]. 化学进展,2014,26(6):1005-1020. ZHANG Heng,ZHENG Liping,NIE Jin,et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry,2014,26(6):1005-1020. [73] MEZIANE R,BONNET J P,COURTY M,et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries[J]. Electrochimica Acta,2011,57:14-19. [74] MA Q,ZHANG H,ZHOU C,et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition,2016,55(7):2521-2525. [75] MA Q,XIA Y,FENG W,et al. Impact of functional group in polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrode[J]. RSC Advances,2016,6:32454-32461. [76] SHI Q,XUE L,QIN D,et al. Single ion solid-state composite electrolytes with high electrochemical stability based on a poly (perfluoroalkylsulfonyl)-imide ionene polymer[J]. Journal of Materials Chemistry A,2014,2(38):15952-15957. [77] ROHAN R,SUN Y,CAI W,et al. Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries[J]. Journal of Materials Chemistry A,2014,2(9):2960-2967. [78] LIU Y,ZHANG Y,PAN M,et al. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. Journal of Membrane Science,2016,507:99-106. [79] BOUCHET R,MARIA S,MEZIANE R,et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater.,2013,12(5):452-457. [80] INCEOGLU S,ROJAS A A,DEVAUX D,et al. Morphology- conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries[J]. ACS Macro Letters,2014,3(6):510-514. [81] YANG L Y,WEI D X,XU M,et al. Transferring lithium ions in nanochannels:A PEO/Li+ solid polymer electrolyte design[J]. Angewandte Chemie International Edition,2014,53(14):3631-3635. [82] GU Y,ZHANG S,MARTINETTI L,et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking[J]. Journal of the American Chemical Society,2013,135(26):9652-9655. [83] ROLLAND J,POGGI E,VLAD A,et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer,2015,68:344-352. [84] PAGE K A,SOLES C L,RUNT J P. Polymers for energy storage and delivery:Polyelectrolytes for batteries and fuel cells[M]. USA:Oxford University Press,2012. [85] BESNER S,VALL E A,BOUCHARD G,et al. Effect of anion polarization on conductivity behavior of poly(ethylene oxide) complexed with alkali salts[J]. Macromolecules,1992,25(24):6480-6488. [86] LIANG S,CHOI U H,LIU W,et al. Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates[J]. Chemistry of Materials,2012,24(12):2316-2323. [87] ROHAN R,PAREEK K,CHEN Z,et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. J. Mater. Chem. A,2015,3(40):20267-20276. [88] LIANG Y,JI L,GUO B,et al. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators[J]. Journal of Power Sources,2011,196(1):436-441. [89] CHO T H,TANAKA M,ONISHI H,et al. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery[J]. Journal of Power Sources,2008,181(1):155-160. [90] WALKER C N,VERSEK C,TOUMINEN M,et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Letters,2012,1(6):737-741. [91] OSIŃSKA M,WALKOWIAK M,ZALEWSKA A,et al. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes[J]. Journal of Membrane Science,2009,326(2):582-588. [92] YANG G,HAN H,DU C,et al. Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions[J]. Polymer,2010,51(26):6193-6202. [93] ROHAN R,PAREEK K,CAI W,et al. Melamine- terephthalaldehyde-lithium complex:A porous organic network based single ion electrolyte for lithium ion batteries[J]. J. Mater. Chem. A,2015,3(9):5132-5139. [94] HUMBECK J F,AUBREY M L,ALSBAIEE A,et al. Tetraarylborate polymer networks as single-ion conducting solid electrolytes[J]. Chem. Sci.,2015,6(10):5499-5505. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[6] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[7] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[8] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[9] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[10] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[11] | 郑征, 王肖帅, 李斌, 黄涛, 李佩柯. 基于三绕组变压器的锂电池组自适应交错控制均衡方案[J]. 储能科学与技术, 2022, 11(4): 1131-1140. |
[12] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[13] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[14] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[15] | 陈博文, 崔瑞广, 沈炎宾, 陈立桅. 杨氏模量微观表征新方法在锂电池中的应用[J]. 储能科学与技术, 2022, 11(3): 991-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||