储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 615-626.doi: 10.12028/j.issn.2095-4239.2016.0043
李 杨,丁 飞,桑 林,钟 海,刘兴江
收稿日期:
2016-07-06
修回日期:
2016-07-30
出版日期:
2016-09-01
发布日期:
2016-09-01
通讯作者:
丁飞,教授,主要研究方向为新型化学电源,E-mail:hilldingfei@163.com。
作者简介:
李杨(1988—),女,工程师,主要研究方向为全固态锂离子电池,E-mail:li_yang11@126.com
基金资助:
LI Yang, DING Fei, SANG Lin, ZHONG Hai, LIU Xingjiang
Received:
2016-07-06
Revised:
2016-07-30
Online:
2016-09-01
Published:
2016-09-01
摘要: 全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本上解决电池安全性问题,是电动汽车和规模化储能理想的化学电源。为了实现大容量化和长寿命,从而推进全固态锂离子电池的实用化,电池关键材料的开发和性能的优化刻不容缓,主要包括制备高室温电导率和电化学稳定性的固态电解质以及适用于全固态锂离子电池的高能量电极材料、改善电极/固态电解质界面相容性。本文以全固态锂离子电池关键材料为出发点,综述了不同类型的固态电解质和正负极材料性能特征以及电极/电解质界面性能的调控和优化方法等,阐述了未来全固态锂离子电池关键材料的发展方向以及界面问题的解决思路,为探索全固态锂离子电池产业化前景奠定基础。
李 杨,丁 飞,桑 林,钟 海,刘兴江. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626.
LI Yang, DING Fei, SANG Lin, ZHONG Hai, LIU Xingjiang. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626.
[1] WANG Y,ZHONG W H. Development of electrolytes towards achieving safe and high-performance energy-storage devices:A review[J]. ChemElectroChem,2015,2(1):22-36. [2] SCROSATI B,HASSOUN J,SUN Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science,2011,4(9):3287-3295. [3] 许晓雄,邱志军,官亦标,等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013,2(4):331-341. XU Xiaoxiong,QIU Zhijun,GUAN Yibiao,et al. All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology,2013,2(4):331-341. [4] IBAA H,YADA C. Innovative batteries for sustainable mobility[C]. 17th International Meeting on Lithium Batteries, Italy:Como, June 10-14,2014. [5] CLERICUZIO M,PARKER W O,SOPRANI M,et al. Ionic diffusivity and conductivity of plasticized polmer electrolytes:PMFGNMR and complex impedance studies[J]. Solid State Ionics,1995,82(3/4):179-192. [6] ANGULAKSHMI N,KUMAR R S,KULANDAINATHAN M A,et al. Composite polymer electrolytes encompassing metal organic frame works:A new strategy for all-solid-state lithium batteries[J]. J. Phys. Chem. C,2014,118:24240-24247. [7] LIU J,XU J,LIN Y,et al. All-solid-state lithium ion battery:Research and industrial prospects[J]. Acta Chimica Sinica,2013,71(6):869-878. [8] CROCE F,SETTIMI L,SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications,2006,8(2):364-368. [9] KUMAR S R,RAJA M,KULANDAINATHAN A M,et al. Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries[J]. RSC Advances,2014,4(50):26171-26175. [10] GERBALDI C,NAIR J R,KULANDAINATHAN M A,et al. Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,2014,2(26):9948-9954. [11] TANG C,HACKENBERG K,FU Q,et al. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers[J]. Nano Letters,2012,12(3):1152-1156. [12] DAIGLE J C,VIJH A,HOVINGTON P,et al. Lithium battery with solid polymer electrolyte based on comb-like copolymers[J]. Journal of Power Sources,2015,279:372-383. [13] KHURANA R,SCHAEFER J L,ARCHER L A,et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes:A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society,2014,136(20):7395-7402. [14] CHOUDHURY S,MANGAL R,AGRAWAL A,et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nat. Commun.,2015,6:doi:10.1038/ncomms10101. [15] INAGUMA Y,ITOH M. Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides[J]. Solid State Ionics,1996,86/87/88,Part 1:257-260. [16] ARBI K,MANDAL S,ROJO J M,et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 £ x £ 0.7. A parallel NMR and electric impedance study[J]. Chem. Mater.,2002,14:1091-1097. [17] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in gamet-type Li2La3Zr2O12[J]. Angewandte Chemie International Edition,2007,46(41):7778-7781. [18] KNAUTH P. Inorganic solid Li ion conductors:An overview[J]. Solid State Ionics,2009,180(14/15/16):911-916. [19] KOBAYASHI Y,MIYASHIRO H,TAKEUCHI T,et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics,2002,152/153:137-142. [20] SCHRÖDER C,REN J,RODRIGUES A,et al. Glass-to-crystal transition in Li1+xAlxGe2-x(PO4)3 structural aspects studied by solid state[J]. J. Phys. Chem. C,2014,118:9400-9411. [21] SHARAFI A,MEYER H M,NANDA J,et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources,2016,302:135-139. [22] HAMON Y,DOUARD A,SABARY F,et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films[J]. Solid State Ionics,2006,177(3/4):257-261. [23] VEREDA F,CLAY N,GEROUKI A,et al. A study of electronic shorting in IBDA-deposited LiPON films[J]. Journal of Power Sources,2000,89(2):201-205. [24] VEREDA F,GOLDNER R B,HAAS T E,et al. Rapidly grown IBAD LiPON films with high Li-Ion conductivity and electrochemical stability[J]. Electrochemical and Solid-State Letters,2002,5(11):A239-A241. [25] ZHAO S,FU Z,QIN Q. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films,2002,415(1/2):108-113. [26] XIE J,OUDENHOVEN J F,HARKS P P,et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state li-ion batteries[J]. Journal of the Electrochemical Society,2014,162(3):A249-A254. [27] WEST W C,HOOD Z D,ADHIKARI S P,et al. Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source[J]. Journal of Power Sources,2016,312:116-122. [28] NISULA M,SHINDO Y,KOGA H,et al. Atomic layer deposition of lithium phosphorus oxynitride[J]. Chemistry of Materials,2015,27(20):6987-6993. [29] JOO K H,SOHN H J,VINATIER P,et al. Lithium ion conducting lithium sulfur oxynitride thin film[J]. Electrochemical and Solid-State Letters,2004,7(8):A256-A258. [30] JEE S H,LEE M J,AHN H S,et al. Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries[J]. Solid State Ionics,2010,181(19/20):902-906. [31] WU F,LIU Y,CHEN R,et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries[J]. Journal of Power Sources,2009,189(1):467-470. [32] KANNO R,MURAYAMA M. Lithium ionic conductor thio-LISICON:The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society,2001,148(7):A742-A746. [33] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nature Materials,2011,10(9):682-686. [34] WHITELEY J M,WOO J H,HU E,et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society,2014,161(12):A1812-A1817. [35] RANGASAMY E,LIU Z,GOBET M,et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the America Chemical Society,2015,137:1384-1387. [36] MIZUNO F,HAYASHI A,TADANAGA K,et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials,2005,17(7):918-921. [37] HAYASHI A,MINAMI K,UJIIE S,et al. Preparation and ionic conductivity of Li7P3S11−z glass-ceramic electrolytes[J]. Journal of Non-Crystalline Solids,2010,356(44/45/46/47/48/49):2670-2673. [38] LIU Z,TANG Y,WANG Y,et al. High performance Li2SeP2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources,2014,260:264-267. [39] HAYASHI A,HAMA S,MINAMI T,et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications,2003,5:111-114. [40] KENNEDY J H,ZHANG Z,ECKERT H. XVth international congress on glass ionically conductive sulfide-based lithium glasses[J]. Journal of Non-Crystalline Solids,1990,123(1):328-338. [41] WADA H,MENETRIER M,LEVASSEUR A,et al. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses[J]. Materials Research Bulletin,1983,18(2):189-193. [42] HAYASHI A,TATSUMISAGO M,MINAMI T. Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2 S·0.4SiS2)·xLi4SiO4 oxysulfide glasses[J]. Journal of the Electrochemical Society,1999,146(9):3472-3475. [43] 邱振平,张英杰,夏书标,等. 无机全固态锂离子电池界面性能研究进展[J]. 化学学报,2015,73:992-1001. QIU Zhenping,ZHANG Yingjie,XIA Shubiao,et al. Research progress on interface properties of inorganic solid state lithium ion batteries[J]. Acta Chimica Sinica,2015,73:992-1001. [44] MO Y,ONG S P,CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials,2012,24(1):15-17. [45] HAYASHI A,HAMA S,MORIMOTO H,et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society,2001,84(2):477-79. [46] KONDO S,TAKADA K,YAMAMURA Y. New lithium ion conductors based on Li2S-SiS2 system[J]. Solid State Ionics,1992,53/54/55/56,(Part 2):1183-1186. [47] MINAMI K,HAYASHI A,UJIIE S,et al. Structure and properties of Li2S-P2S5-P2S3 glass and glass-ceramic electrolytes[J]. Journal of Power Sources,2009,189(1):651-654. [48] MERCIER R,MALUGANI J P,FAHYS B,et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics,1981,5:663-666. [49] UJIIE S,HAYASHI A,TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics,2012,211:42-45. [50] UJIIE S,INAGAKI T,HAYASHI A,et al. Conductivity of 70Li2S·30P2S5 glasses and glass-ceramics added with lithium halides[J]. Solid State Ionics,2014,263:57-61. [51] KIM J G,SON B,MUKHERJEE S,et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources,2015,282:299-322. [52] OHTA N,TAKADA K,ZHANG L,et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials,2006,18(17):2226-2229. [53] OHTA N,TAKADA K,SAKAGUCHI I,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications,2007,9(7):1486-1490. [54] WOO J H,TREVEY J E,CAVANAGH A S,et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries[J]. Journal of the Electrochemical Society,2012,159(7):A1120-A1124. [55] SAKUDA A,HAYASHI A,OHTOMO T,et al. LiCoO2 Electrode particles coated with Li2S-P2S5 solid electrolyte for all-solid-state batteries[J]. Electrochemical and Solid-State Letters,2010,13(6):A73-A75. [56] KITAURA H,HAYASHI A,TADANAGA K.,et al. Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes[J]. Electrochimica Acta,2010,55(28):8821-8828. [57] KOBAYASHI Y,MIYASHIRO H,TAKEI K,et al. 5V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4[J]. Journal of the Electrochemical Society,2003,150(12):A1577-A1582. [58] YADA C,OHMORI A,IDE K. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries[J]. Advanced Energy Materials,2014,4(9):1079-1098. [59] YUBUCHI S,ITO Y,MATSUYAMA T,et al. 5V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics,2016,285:79-82. [60] OH G,HIRAYAMA M,KWON O,et al. Bulk-type all solid-state batteries with 5V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chemistry of Materials,2016,28(8):2634-2640. [61] KUWATA N,KUDO S,MATSUDA Y,et al. Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes[J]. Solid State Ionics,2014,262:165-169. [62] LI W J,HIRAYAMA M,SUZUKI K,et al. Fabrication and all solid-state battery performance of TiS2/Li10GeP2S12 composite electrodes[J]. Materials Transactions,2016,57(4):549-552. [63] HAYASHI A,OHTOMO T,MIZUNO F,et al. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes[J]. Electrochimica Acta,2004,50(2/3):893-897. [64] HOVINGTON P,LAGACÉ M,GUERFI A,et al. New lithium metal polymer solid state battery for an ultrahigh energy:Nano C-LiFePO4 versus nano Li1.2V3O8[J]. Nano Letters,2015,15(4):2671-2678. [65] PARK C M,KIM J H,KIM H,et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews,2010,39(8):3115-3141. [66] KOBAYASHI T,INADA T,SONOYAMA N,et al. All solid-state batteries using super ionic conductor, thio-LISICON-electrode electrolyte interfacial design[J]. Mater. Res. Soc.,2005,835:doi:10.1557/PROC-835-K11.1. [67] KOBAYASHI T,YAMADA A,KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON[J]. Electrochimica Acta,2008,53(15):5045-5050. [68] KANNO R,MURAYAMA M,INADA T,et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries[J]. Electrochemical and Solid-State Letters,2004,7(12):A455-A458. [69] SAKUMA M,SUZUKI K,HIRAYAMA M,et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M(M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics,2016,285:101-105. [70] 任建国,王科,何向明,等. 锂离子电池合金负极材料的研究进展[J]. 化学进展,2005,17(4),597-603. REN J G,WANG K,HE X M,et al. Studies of alloy based anode materials for lithium ion batteries[J]. Process in Chemistry,2015,17(4):597-603. [71] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. J. Power Sources,2011,196(1):13-24. [72] SATO S,UNEMOTO A,IKEDA T,et al. Lithium batteries:Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small,2016,12(25):3381-3387. [73] NAM D H,KIM J W,LEE J H,et al. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes[J]. Journal of Materials Chemistry A,2015,3(20):11021-11030. [74] PARK S,LEE K S,YOON Y S. Designing SnOx/C films via co-sputtering as anodes for all-solid-state batteries[J]. Surface and Coatings Technology,2016,294:139-144. [75] PLYLAHAN N,LETICHE M,BARR M K S,et al. All-solid-state lithium-ion batteries based on self-supported titania nanotubes[J]. Electrochemistry Communications,2014,43:121-124. [76] KITAURA H,HAYASHI A,TADANAGA K,et al. High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode[J]. Journal of Power Sources,2009,189(1):145-148. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[3] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[4] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[5] | 石鹏, 翟喜民, 杨贺捷, 赵辰孜, 闫崇, 别晓非, 姜涛, 张强. 实用化复合锂负极研究进展[J]. 储能科学与技术, 2022, 11(6): 1725-1738. |
[6] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[7] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[8] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[9] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[10] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[11] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 王宇作, 邓苗, 王瑨, 杨斌, 卢颖莉, 荆葛, 阮殿波. 碳化温度对软碳负极储锂动力学的影响[J]. 储能科学与技术, 2022, 11(6): 1715-1724. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||