储能科学与技术 ›› 2017, Vol. 6 ›› Issue (1): 11-23.doi: 10.12028/j.issn.2095-4239.2016.0104
张 华,金 周,赵俊年,武怿达,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰
出版日期:
2017-01-03
发布日期:
2017-01-03
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@ iphy.ac.cn。
作者简介:
张华(1993—),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:zhanghua15@mails.ucas.ac.cn;
ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Online:
2017-01-03
Published:
2017-01-03
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2016年10月1日至2016年11月30日上线的锂电池研究论文,共有2132篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,电解液添加剂、固态电解质电池、锂硫电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇针对电池分析、电池管理系统技术的研究论文。
张 华,金 周,赵俊年,武怿达,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰. 锂电池百篇论文点评(2016.10.1—2016.11.30)[J]. 储能科学与技术, 2017, 6(1): 11-23.
ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2016 to Nov. 30, 2016)[J]. Energy Storage Science and Technology, 2017, 6(1): 11-23.
[1] EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique[J]. Journal of Power Sources, 2016, 329: 364-371. [2] TAGUCHI N, AKITA T, TATSUMI K, et al. Characterization of MgO-coated-LiCoO2 particles by analytical transmission electron microscopy[J]. Journal of Power Sources, 2016, 328: 161-166. [3] MATSUSHITA Y, OSAKA R, BUTSUGAN K, et al. Strain imaging of a LiCoO2 cathode in a Li-ion battery[J]. Journal of Chemical Physics, 2016, 145(11): doi: 10.1063/1.4962833. [4] AGYEMAN D A, SONG K, LEE G H, et al. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery[J]. Advanced Energy Materials, 2016, 6(20): 904. [5] LUO D, FANG S, TAMIYA Y, et al. Countering the segregation of transition-metal ions in LiMn1/3Co1/3Ni1/3O2 cathode for ultralong life and high-energy Li-ion batteries[J]. Small, 2016, 12(32): 4421-4430. [6] JO H, KIM J, DAN-THIEN N, et al. Stabilizing the solid electrolyte interphase layer and cycling performance of silicon-graphite battery anode by using a binary additive of fluorinated carbonates[J]. Journal of Physical Chemistry C, 2016, 120(39): 22466-22475. [7] LIU H, BUGNET M, TESSARO M Z, et al. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(42): 29064-29075. [8] BOERNER M, HORSTHEMKE F, KOLLMER F, et al. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes[J]. Journal of Power Sources, 2016, 335: 45-55. [9] ABOUIMRANE A, CUI Y, CHEN Z, et al. Enabling high energy density Li-ion batteries through Li2O activation[J]. Nano Energy, 2016, 27: 196-201. [10] BOULET-ROBLIN L, VILLEVIEILLE C, BOREL P, et al. Versatile approach combining theoretical and experimental aspects of raman spectroscopy to investigate battery materials: The case of the LiNi0.5Mn1.5O4 spinel[J]. Journal of Physical Chemistry C, 2016, 120(30): 16377-16382. [11] ALLEN J L, ALLEN J L, THOMPSON T, et al. Cr and Si substituted-LiCo0.9Fe0.1PO4: Structure, full and half Li-ion cell performance[J]. Journal of Power Sources, 2016, 327: 229-234. [12] HU J, JIANG Y, CUI S, et al. 3D-printed cathodes of LiMn1-xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. Advanced Energy Materials, 2016, 6(18): 856-856. [13] JEZOWSKI P, FIC K, CROSNIER O, et al. Lithium rhenium(VII) oxide as a novel material for graphite pre-lithiation in high performance lithiumion capacitors[J]. Journal of Materials Chemistry A, 2016, 4(32): 12609-12615. [14] JEONG M, AHN S, YOKOSHIMA T, et al. New approach for enhancing electrical conductivity of electrodeposited Si-based anode material for Li secondary batteries: Self-incorporation of nano Cu metal in Si-O-C composite[J]. Nano Energy, 2016, 28: 51-62. [15] YUE X, SUN W, ZHANG J, et al. Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 329: 422-427. [16] JAGANNADHAM K. Thermal conductivity and interface thermal conductance of thin films in Li ion batteries[J]. Journal of Power Sources, 2016, 327: 565-572. [17] BHATTACHARYA S, ALPAS A T. Self-healing of cracks formed in silicon-aluminum anodes electrochemically cycled at high lithiation rates[J]. Journal of Power Sources, 2016, 328: 300-310. [18] CHEN Y, LI Y, WANG Y, et al. Rapid, in situ synthesis of high capacity battery anodes through high temperature radiation-based thermal shock[J]. Nano Letters, 2016, 16(9): 5553-5558. [19] YASUDA K, KASHITANI Y, KIZAKI S, et al. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries[J]. Journal of Power Sources, 2016, 329: 462-472. [20] LEE J, KOO J, JANG B, et al. Quantitative relationships between microstructures and electrochemical properties in Si core-SiOx shell nanoparticles for Li-ion battery anodes[J]. Journal of Power Sources, 2016, 329: 79-87. [21] ZHU J, WANG T, FAN F, et al. Atomic-scale control of silicon expansion space as ultrastable battery anodes[J]. ACS Nano, 2016, 10(9): 8243-8251. [22] PARK H, CHOI S, LEE S J, et al. Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability[J]. Nano Energy, 2016, 26: 192-199. [23] FERRARESI G, CZORNOMAZ L, VILLEVIEILLE C, et al. Eluci dating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29791-29798. [24] ILOTT A J, MOHAMMADI M, CHANG H J, et al. Real-time 3D imaging of microstructure growth in battery cells using indirect MRI[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10779-10784. [25] ZHAO B, JIANG L, ZENG X, et al. A highly thermally conductive electrode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(38): 14595-14604. [26] WINKLER V, KILIBARDA G, SCHLABACH S, et al. Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries[J]. Journal of Physical Chemistry C, 2016, 120(43): 24706-24714. [27] GAO P, WANG L, ZHANG Y Y, et al. High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2[J]. Nano Letters, 2016, 16(9): 5582-5588. [28] LI C, SHI T, YOSHITAKE H, et al. Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry[J]. Journal of Materials Chemistry A, 2016, 4(43): 16982-16991. [29] BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3221-3229. [30] BRON P, DEHNEN SROLING B. Li10Si0.3Sn0.7P2S12-a low-cost and low-grain-boundary-resistance lithium superionic conductor[J]. Journal of Power Sources, 2016, 329: 530-535. [31] BUSCHE M R, WEBER D A, SCHNEIDER Y, et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup[J]. Chemistry of Materials, 2016, 28(17): 6152-6165. [32] QIAN Y, NIEHOFF P, BOERNER M, et al. Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode[J]. Journal of Power Sources, 2016, 329: 31-40. [33] JALEM R, MORISHITA Y, OKAJIMA T, et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon[J]. Journal of Materials Chemistry A, 2016, 4(37): 14371-14379. [34] LUO W, GONG Y, ZHU Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. [35] NAGATA H, CHIKUSA Y. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions[J]. Journal of Power Sources, 2016, 329: 268-272. [36] LI Y, ZHOU W, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries[J]. Angewandte Chemie- International Edition, 2016, 55(34): 9965-9968. [37] YU C, GANAPATHY S, DE KLERK N J, et al. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery[J]. Journal of the American Chemical Society, 2016, 138(35): 11192-11201. [38] HANSEL C, AFYON S, RUPP J L. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode- LiMn1.5Ni0.5O4[J]. Nanoscale, 2016, 8(43): 18412-18420. [39] MA C, CHENG Y, YIN K, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036. [40] SHOBUKAWA H, SHIN J, ALVARADO J, et al. Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid[J]. Journal of Materials Chemistry A, 2016, 4(39): 15117-15125. [41] KERNER M, LIM D H, JESCHKE S, et al. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality[J]. Journal of Power Sources, 2016, 332: 204-212. [42] MEHDI B L, STEVENS A, QIAN J, et al. The impact of Li grain size on coulombic efficiency in Li batteries[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep34267. [43] MOEREMANS B, CHENG H W, HU Q, et al. Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms12693. [44] CAO X, HE X, WANG J, et al. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25971-25978. [45] RONG H, XU M, XIE B, et al. A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes[J]. Journal of Power Sources, 2016, 329: 586-593. [46] WAGNER R, STREIPERT B, KRAFT V, et al. Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, 3(15): doi: 10.1002/admi.20160009. [47] XIA J, PETIBON R, XIAO A, et al. The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li [Ni0.4 Mn0.4Co0.2]O2/graphite pouch Li-ion cells[J]. Journal of Power Sources, 2016, 330: 175-185. [48] QIAN Y, SCHULTZ C, NIEHOFF P, et al. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells[J]. Journal of Power Sources, 2016, 332: 60-71. [49] WAGNER R, KORTH M, STREIPERT B, et al. Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells[J]. ACS Applied Materials & Interfaces, 2016: doi: 10.1021/acsami.6609164. [50] ELIA G A, ULISSI U, JEONG S, et al. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3210-3220. [51] KASMAEE L M, ARYANFAR A, CHIKNEYAN Z, et al. Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization[J]. Chemical Physics Letters, 2016, 661: 65-69. [52] TAN J, RYAN E M. Structured electrolytes to suppress dendrite growth in high energy density batteries[J]. International Journal of Energy Research, 2016, 40(13): 1800-1810. [53] VAN DEN BROEK J, AFYON S, RUPP J L. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): 736-736. [54] WU S, ZHU K, TANG J, et al. A long-life lithium ion oxygen battery based on commercial silicon particles as the anode[J]. Energy & Environmental Science, 2016, 9(10): 3262-3271. [55] JOZWIUK A, BERKES B B, WEISS T, et al. The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2603-2608. [56] DING N, ZHOU L, ZHOU C, et al. Building better lithium-sulfur batteries: From LiNO3 to solid oxide catalyst[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep33154. [57] FANG R, ZHAO S, PEI S, et al. Toward more reliable lithium-sulfur batteries: An all-graphene cathode structure[J]. ACS Nano, 2016, 10(9): 8676-8682. [58] SUN D, HWA Y, SHEN Y, et al. Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells[J]. Nano Energy, 2016, 26: 524-532. [59] AI G, DAI Y, MAO W, et al. Biomimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries[J]. Nano Letters, 2016, 16(9): 5365-5372. [60] XU Z, WANG J, YANG J, et al. Enhanced performance of a lithium-sulfur battery using a carbonate-based electrolyte[J]. Angewandte Chemie-International Edition, 2016, 55(35): 10372- 10375. [61] YE F, LIU M, ZHANG X, et al. Prelithiation of nanostructured sulfur cathode by an “on-sheet” solid-state reaction[J]. Small, 2016, 12(36): 4966-4972. [62] YAN C, CHENG X B, ZHAO C Z, et al. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode[J]. Journal of Power Sources, 2016, 327: 212-220. [63] WANG D H, XIE D, YANG T, et al. Conversion from Li2SO4 to Li2S@C on carbon paper matrix: A novel integrated cathode for lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 331: 475-480. [64] NAGAO M, SUZUKI K, IMADE Y, et al. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures[J]. Journal of Power Sources, 2016, 330: 120-126. [65] DIBDEN J W, SMITH J W, ZHOU N, et al. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram[J]. Chemical Communications, 2016, 52(87): 12885-12888. [66] WU F, LI J, SU Y, et al. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries[J]. Nano Letters, 2016, 16(9): 5488-5494. [67] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. [68] KOBAYASHI S, FISHER C, KATO T, et al. Atomic-scale observations of (010) LiFePO4 surfaces before and after chemical delithiation[J]. Nano Letters, 2016, 16(9): 5409-5414. [69] KIMURA K, MOTOMATSU J, TOMINAGA Y. Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability[J]. Journal of Polymer Science Part B-Polymer Physics, 2016, 54(23): 2442-2447. [70] AKITA T, TAGUCHI N. Practical analysis of Li distribution by EELS[J]. Surface and Interface Analysis, 2016, 48(11): 1226-1230. [71] SCHRÖEDER D, BENDER C L, ARLT T, et al. In operando X-ray tomography for next-generation batteries: A systematic approach to monitor reaction product distribution and transport processes[J]. Journal of Physics D-Applied Physics, 2016, 49(40): doi: 10.1088/0022-3727/49/40/404001. [72] QIAN J, ADAMS B D, ZHENG J, et al. Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2016, 26(39): 7094-7102. [73] PRADANAWATI S A, WANG F M, SU C H. Using electrochemical surface plasmon resonance for in-situ kinetic investigations of solid electrolyte interphase formation in lithium ion battery[J]. Journal of Power Sources, 2016, 330: 127-131. [74] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics : PCCP, 2016, 18(45): 30912-30919. [75] GHANBARI N, WALDMANN T, KASPER M, et al. Inhomogeneous degradation of graphite anodes in Li-ion cells: A postmortem study using glow discharge optical emission spectroscopy (GD-OES)[J]. Journal of Physical Chemistry C, 2016, 120(39): 22225-22234. [76] CHEN C Y, SANO T, TSUDA T, et al. In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep36153. [77] FRIESEN A, HORSTHEMKE F, MONNIGHOFF X, et al. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis[J]. Journal of Power Sources, 2016, 334: 1-11. [78] DARMA M, LANG M, KLEINER K, et al. The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: A post mortem analysis[J]. Journal of Power Sources, 2016, 327: 714-725. [79] BERKES B B, SCHIELE A, SOMMER H, et al. On the gassing behavior of lithium-ion batteries with NCM523 cathodes[J]. Journal of Solid State Electrochemistry, 2016, 20(11): 2961-2967. [80] HALL F, WUSSLER S, BUQA H, et al. Asymmetry of discharge/charge curves of lithium-ion battery intercalation electrodes[J]. Journal of Physical Chemistry C, 2016, 120(41): 23407-23414. [81] KONG F, LIANG C, LONGO R C, et al. Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials[J]. Chemistry of Materials, 2016, 28(19): 6942-6952. [82] BOYER M J, [83] SUN Y Y, LI J F, ZHOU F Q, et al. Probing the potential of halogen-free superhalogen anions as effective electrolytes of Li-ion batteries: A theoretical prospect from combined initio and DFT studies[J]. Physical Chemistry Chemical Physics, 2016, 18(41): 28576-28584. [84] CHEN H, ISLAM M S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization[J]. Chemistry of Materials, 2016, 28(18): 6656-6663. [85] SEYMOUR I D, WALES D J, GREY C P. Preventing structural rearrangements on battery cycling: A first-principles investigation of the effect of dopants on the migration barriers in layered Li0.5MnO2[J]. Journal of Physical Chemistry C, 2016, 120(35): 19521-19530. [86] SHAKOURIAN-FARD M, KAMATH G, SANKARANARAYANAN S. Evaluating the free energies of solvation and electronic structures of lithium-ion battery electrolytes[J]. Chemphyschem, 2016, 17(18): 2916-2930. [87] DE KLERK N J, ROSLON I, WAGEMAKER M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: The effect of Li vacancies, halogens, and halogen disorder[J]. Chemistry of Materials, 2016, 28(21): 7955-7963. [88] LIM J M, OH R G, KIM D, et al. Design of surface doping for mitigating transition metal dissolution in LiNi0.5Mn1.5O4 nanoparticles[J]. ChemSusChem, 2016, 9(20): 2967-2973. [89] HAN Y K, YOO J, YIM T. Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: Tris(trimethylsilyl) phosphite, borate, and phosphate[J]. Electrochimica Acta, 2016, 215: 455-465. [90] RICHARDS W D, WANG Y, MIARA L J, et al. Design of Li1+2xZn1-xPS4, a new lithium ion conductor[J]. Energy & Environmental Science, 2016, 9(10): 3272-3278. [91] KITAMURA N, ISHIDA N, IDEMOTO Y. Atomic-configuration analysis on LiNi0.5Mn0.5O2 by reverse monte carlo simulation[J]. Electrochemistry, 2016, 84(10): 789-792. [92] FINEGAN D P, COOPER S J, TJADEN B, et al. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy[J]. Journal of Power Sources, 2016, 333: 184-192. [93] FORESTIER C, GRUGEON S, DAVOISNE C, et al. Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt[J]. Journal of Power Sources, 2016, 330: 186-194. [94] LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2016: doi: 10.1002/ anie.201608730. [95] MINATO T, KAWAURA H, HIRAYAMA M, et al. Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements[J]. Journal of Physical Chemistry C, 2016, 120(36): 20082-20088. [96] AL-OBEIDI A, KRAMER D, BOLES S T, et al. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation[J]. Applied Physics Letters, 2016, 109(7): doi: 10.1063/1.4961234. [97] MIARA L, WINDMUELLER A, TSAI C L, et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26842-26850. [98] ZHENG D, YANG X Q, QU D. Reaction between lithium anode and polysulfide ions in a lithium-sulfur battery[J]. ChemSusChem, 2016, 9(17): 2348-2350. [99] ASHWIN T R, CHUNG Y M, WANG J. Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328: 586-598. [100] DEY S, BIRON Z A, TATIPAMULA S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries[J]. Control Engineering Practice, 2016, 56: 37-48.
|
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||