储能科学与技术 ›› 2017, Vol. 6 ›› Issue (1): 24-34.doi: 10.12028/j.issn.2095-4239.2016.0037
王彩霞1,黄 云1,姚 华1,叶 锋1,杨 军1,丁玉龙2
收稿日期:
2016-07-06
修回日期:
2016-09-08
出版日期:
2017-01-03
发布日期:
2017-01-03
通讯作者:
黄云,副研究员,研究方向为储能技术、燃烧技术,E-mail:yunhuang@ipe.ac.cn。
作者简介:
王彩霞(1980—),女,助理研究员,研究方向为储能技术,E-mail:cxsxlinfen@aliyun.com;
基金资助:
WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2
Received:
2016-07-06
Revised:
2016-09-08
Online:
2017-01-03
Published:
2017-01-03
摘要: 纳米流体作为一种新型高效换热工质展现出良好的换热性能引起了许多研究者的关注。本文综述了纳米流体在热导率、对流换热系数、比热容、黏性以及稳定性五个方面的研究进展。重点介绍和讨论了纳米流体热导率提高的机制、影响纳米流体热物理特性的因素以及纳米流体研究各方面面临的挑战性问题,并对纳米流体的未来研究进行了展望,指出将复合纳米材料的制备与纳米流体性质结合有可能成为增强新型换热工质效能的有效途径之一。
王彩霞1,黄 云1,姚 华1,叶 锋1,杨 军1,丁玉龙2. 纳米流体研究进展[J]. 储能科学与技术, 2017, 6(1): 24-34.
WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2. Review of recent advances in research of nanofluids[J]. Energy Storage Science and Technology, 2017, 6(1): 24-34.
[1] CHOI S U S. Nanofluids: From vision to reality through research[J]. J. Heat Transf.-Trans. ASME, 2009, 131(3): doi: 10.1115//1.3056479. [2] PARAMETTHANUWAT T, BHUWAKIETKUMJOHN N, RITTIDECH S, et al. Experimental investigation on thermal properties of silver nanofluids[J]. Int. J. Heat Fluid Flow, 2015, 56: 80-90. [3] CHEN H S, DING Y L. Heat transfer and rheological behaviour of nanofluids: A review//Advances in transport phenomena[M]. WANG L Q (eds.), Berlin Heidelberg: Springer-Verlag, 2009, 1: 135-177. [4] SHOGHL S N, JAMALI J, MORAVEJI M K. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study[J]. Exp. Therm. Fluid Sci., 2016, 74: 339-346. [5] SHARMA A K, TIWARI A K, DIXIT A R. Rheological behaviour of nanofluids: A review[J]. Renew. Sust. Energ. Rev., 2016, 53: 779-791. [6] OZERINC S, KAKAC S, YAZICIOGLU A G. Enhanced thermal conductivity of nanofluids: A state-of-the-art review[J]. Microfluid Nanofluid, 2010, 8: 145-170. [7] YU W, XIE H Q. A review on nanofluids: Preparation, stability mechanisms, and applications[J]. J. Nanomater, 2012: doi: 10.1155/2012/ 435873. [8] WANG B X, ZHOU L P, PENG X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. Int. J. Heat Mass Transf., 2003, 46: 2665-2672. [9] NAGASAKA Y, NAGASHIMA A. Absolute measurement of the thermal conductivity of electrically conducing liquids by the transient hot-wire method[J]. J. Phys. E, 1981, 14: 1435-1440. [10] WANG Z L, TANG D W, LIU S, et al. Thermal conductivity and thermal diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport[J]. Int. J. Thermophys., 2007, 28(4): 1255-1268. [11] 王照亮, 唐大伟, 郑兴华, 等. 利用3ω法同时测量纳米流体热导率和热扩散系数[J]. 化工学报, 2007, 58(10): 2462-2468. WANG Zhaoliang, TANG Dawei, ZHENG Xinghua, et al. Simultaneous measurements of thermal conductivity and thermal diffusivity of nanofluids using 3ω method[J]. CIESC Journal, 2007, 58(10): 2462-2468. [12] EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl. Phys. Lett., 2001, 78(6): 718-720. [13] LIU M S, LIN M C, TSAI C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. Int. J. Heat Mass Transf., 2006, 49: 3028-3033. [14] PATEL H E, DAS S K, SUNDARARAJAN T, et al. Thermal conductivity of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects[J]. Appl. Phys. Lett., 2003, 83: 2931-2933. [15] WANG C X, YANG J, DING Y L. Phase transfer based synthesis and thermophysical properties of Au/therminol VP-1 nanofluids[J]. Prog. Nat. Sci-Mater., 2013, 23: 338-342. [16] KANG H, KIM S, OH J. Estimation of thermal conductivity of nanofluid using experimental effective particle volume[J]. Exp. Heat Transfer, 2006, 19: 181-191. [17] HONG K S, HONG T K, YANG H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles[J]. Appl. Phys. Lett., 2006, 88: doi: 10.1063/1.2166199. [18] MASUDA H, EBATA A, TERAMAE K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles)[J]. Netsu Bussei (Japan), 1993, 7: 227-233. [19] CHON C H, KIHM K D, LEE S P, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement[J]. Appl. Phys. Lett., 2005, 87: 153107. [20] LEE S, CHOI S U S, LI S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J. Heat Transf.-Trans. ASME, 1999, 121: 280-289. [21] DAS S K, PUTRA N, THIESEN P, et al. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. J. Heat Transf.-Trans. ASME, 2003, 125: 567-574. [22] WEN D, DING Y. Formulation of nanofluids for natural convective heat transfer applications[J]. Int. J. Heat Fluid Flow, 2005, 26: 855-864. [23] MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water-based nanofluids[J]. Int. J. Therm. Sci., 2005, 44: 367-373. [24] HWANG Y, PARK H S, LEE J K, et al. Thermal conductivity and lubrication characteristics of nanofluids[J]. Curr. Appl. Phys., 2006, 6: e67-e71. [25] CHOI S U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl. Phys. Lett., 2001, 79: 2252-2254. [26] XIE H, LEE H, YOUN W, et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. J. Appl. Phys., 2003, 94: 4967-4971. [27] MARQUIS F D S, CHIBANTE L P F. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes[J]. J. Min. Met. Mater. Soc., 2005, 57: 32-43. [28] DING Y, ALIAS H, WEN D, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nanofluids)[J]. Int. J. Heat Mass Transf., 2006, 49: 240-250. [29] ASSAEL M J, METAXA I N, ARVANITIDIS J, et al. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the present of two different dispersants[J]. Int. J. Thermophys., 2005, 26: 647-664. [30] XIE H, WANG J, XI T, et al. Thermal conductivity of suspensions containing nanosized SiC particles[J]. Int. J. Thermophys., 2002, 23: 571-580. [31] Li C H, Peterson G P. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids[J]. J. Appl. Phys., 2007, 101: doi: 10.1063/1.2436472. [32] JIANG W, WANG L Q. Copper nanofluids: Synthesis and thermal conductivity[J]. Curr. Nanosci., 2010, 6: 512-519. [33] TIMOFEEVA E V, ROUTBORT J L, SINGH D. Particle shape effects on thermophysical properties of alumina nanofluids[J]. J. Appl. Phys., 2009, 106: doi: 10.1063/1.3155999. [34] XIE H, WANG J, XI T, et al. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid[J]. J. Mater. Sci. Lett., 2002, 21: 1469-1471. [35] LI X F, ZHU D S, WANG X J, et al. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids[J]. Thermochim. Acta, 2008, 469: 98-103. [36] MAXWELL J C. A Treatise on electricity and magnetism[M]. Cambridge: Oxford University Press, 2nd Ed., 1904: 435-441. [37] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous tow-component systems[J]. Ind. Eng. Chem. Res., 1962, 1: 187-191. [38] RAYLEIGH L. On the instability of a cylinder of viscous liquid under capillary force[J]. Philos. Mag. 1892, 34: 145-154. [39] JEFFREY D J. Conduction through a random suspension of spheres[J]. Prod. Royal Soc. London A, 1973, 335: 355-367. [40] DAVIS R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int. J. Thermophys., 1986, 7: 609-620. [41] XUE Q. Effective-medium theory for two-phase random composite with an interfacial shell[J]. J. Mater. Sci. Technol., 2000, 16: 367-369. [42] BENVENISTE Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case[J]. J. Appl. Phys., 1987, 61: 2840-2843. [43] KEBLINSKI P, PHILLPOT S R, CHOI S U S, EASTMAN J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. Int. J. Heat Mass Transf., 2002, 45: 855-863. [44] EVANS W, FISH J, KEBLINSKi P. Role of brownian motion hydrodynamcis on nanofluids thermal conductivity[J]. Appl. Phys. Lett., 2006, 88: doi: 10.1063/1.2179118. [45] SHENOGIN S, BODAPATI A, XUE L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites[J]. Appl. Phys. Lett., 2004, 85: 2229-2231. [46] SHENOGIN S, XUE L P, OZISIK R, et al. Role of thermal boundary resistance on the heat flow in carbon nanotube composites[J]. J. Appl. Phys., 2004, 95: 8136-8144. [47] PRASHER R, BHATTACHARYA P, PHELAN P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Phys. Rev. Lett., 2005, 94: doi: 10.1103/PhysRevLett.94.025901. [48] PUTNAM P A, CAHILL D G, BRAUN P V, et al. Thermal conductivity of nanoparticle suspensions[J]. J. Appl. Phys., 2006, 99: doi: 10.1063/1.2189933. [49] EVANS W, PRASHER R, FISH J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. Int. J. Heat Mass Transf., 2008, 51: 1431-1438. [50] LOTFIZADEH S, MATSOUKAS T. Effect of nanostructure on thermal conductivity of nanofluids[J]. J. Nanomater., 2015: doi: 10.1155/2015/697596. [51] CHEN H, WITHARANA S, JIN Y, et al. Predicting the thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology[J]. Particuology, 2009, 7: 151-157. [52] PANG C W, JUNG J Y, KANG Y T. Aggregation based model for heat conduction mechanism in nanofluids[J]. Int. J. Heat Mass Transf., 2014, 72: 392-399. [53] HERIS S Z, ETEMAD S G, ESFAHANY M N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer[J]. Int. Commun. Heat Mass Transf., 2006, 33: 529-535. [54] DAS S K, CHOI S U S, YU W. Nanofluids: Science and technology[M]. Hoboken: Wiley Interscience, 2007: 209-296. [55] MARTINEZ-CUENCA R, MONDRAGON R, ERNANDEZ L, et al. Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe[J], Appl. Therm Eng., 2016, 98: 841-849. [56] PUTRA N, ROETZEL W, DAS S. Natural convection of nano-fluids[J]. Heat Mass Transfer, 2003, 39: 775-784. [57] GOMEZ A O C, HOFFMANN A R K , BANDARRA E P. Experimental evaluation of CNT nanofluids in single-phase flow[J]. Int. J. Heat Mass Transf., 2015, 86: 277-287. [58] YU W H, TIMOFEEVA E V, SINGH D, et al. Investigations of heat transfer of copper-in-thermino nanofluids[J]. Int. J. Heat Mass Transf., 2013, 64: 1196-1204. [59] XUAN Y, LI Q. Investigation on convective heat transfer and flow features of nanofluids[J]. J. Heat Transfer, 2003, 125: 151-155. [60] LI Q, XUAN Y. Convective heat transfer and flow characteristics of Cu-water nanofluid[J]. Sci. in China (Series E), 2002, 45: 408-416. [61] HERIS S Z, ESFAHANY M N, ETEMAD S G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J]. Int. J. Heat Fluid Flow, 2007, 28: 203-210. [62] HE Y, JIN Y, CHEN H, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. Int. J. Heat Mass Transf., 2007, 50: 2272-2281. [63] PAK B C, CHOI Y L. hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Exp. Heat Transfer, 1998, 11: 151-170. [64] AMBURU P K, KULKARNI D P, DANDEKAR A, et al. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids[J]. Micro Nano Lett., 2007, 2: 67-71. [65] ZHOU S Q, NI R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid[J]. Appl. Phys. Lett., 2008, 92: doi: 10.1063/1.2890431. [66] VAJJHA R S, DAS D K. Specific heat measurement of three nanofluids and development of new correlations[J]. J. Heat Transfer-ASME, 2009, 131: doi: 10.1115/1.3090813. [67] 彭小飞, 俞小莉, 余凤芹. 低浓度纳米流体比热容试验研究[J]. 材料科学与工程学报, 2007, 25: 719-722. PENG Xiaofei, YU Xiaoli, YU Fengqin. Experimental study on the specific heat of nanofluids[J]. Journal of Materials Science and Engineering, 2007, 25: 719-722. [68] NELSON I C, BANERJEE D, RENGASAMY P. Flow loop experiments using polyalphaolefin nanofluids[J]. J. Thermophys. Heat Transfer, 2009, 23: 752-761. [69] SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. J. Heat Transfer, 2011, 133: doi: 10.1115/1.4002600. [70] SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. Int. J. Heat Mass Transf., 2011, 54: 1064-1070. [71] SYED T H, MUHAMMAD A S, MUHAMMAD S. Synthesis and characterization of nano heat transfer fluid (NHTF)[J]. Curr. Nanosci., 2012, 8: 232-238. [72] DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. Int. J. Therm Sci., 2013, 69: 37-42. [73] TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. Int. J. Heat Mass Transf., 2013, 57: 542-548. [74] TIZNOBAIK H, SHIN D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Appl. Phys. Lett., 2013, 102: doi: 10.1063/1.4801645. [75] MING X H, CHIN P. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. Int. J. Heat Mass Transf., 2014, 70: 174-184. [76] VERGARA O, HEITKANMP K, LOHNEYSEN H. Specific heat of small vanadium particles in the normal and superconducting state[J]. J. Phys. Chem. Solids, 1984, 45: 251-258. [77] SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Appl. Phys. Lett., 2014, 104: doi: 10.1063/1.4868254. [78] WANG B, ZHOU L, PENG X. Surface and size effects on the specific heat capacity of nanoparticles[J]. Int. J. Thermophys., 2006, 27: 139-151. [79] MEYER J P, ADIO S A, SHARIFPUR M, et al. The viscosity of nanofluids: A review of the theoretical, empirical, and numerical models[J]. Heat Transfer Eng., 2016, 37: 387-421. [80] LI H R, WANG L, HE Y R, et al. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids[J]. Appl. Therm. Eng., 2015, 88: 363-368. [81] RUDYAK V Y, KRASNOLUTSKII S L. Dependence of the viscosity of nanofluids on nanoparticle size and material[J]. Phys. Letters A, 2014, 378: 1845-1849. [82] PRASHER R, SONG D, WANG J. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Appl. Phys. Lett., 2006, 89: doi: 10.1063/1.2356113. [83] LI J M, LI Z, WANG B. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Sci. Technol., 2002, 7: 198-201. [84] DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J]. Int. J. Heat Mass Transf., 2003, 46: 851-862. [85] 李泽梁, 李俊明, 王补宣, 等. SDBS对氧化铜纳米颗粒悬浮液黏度的影响[J]. 工程热物理学报, 2003, 24(5): 849-851. LI Zeliang, LI Junming, WANG Buxuan, et al. Influence of sdbs on viscosity of copper oxide nano-suspensions[J]. Journal of Engineering Thermophysics, 2003, 24(5): 849-851. [86] EINSTEIN A. Eine neue bestimmung der molekul-dimension[J]. Annalen der Physik, 1906, 19: 289-306. [87] BATCHELOR G K. Effect of brownian-motion on bulk stress in a suspension of spherical-particles[J]. J. Fluid Mech., 1977, 83: 97-117. [88] KRIEGER I M, DOUGHERTY T J. A mechanism for non- newtonian flow in suspensions of rigid spheres[J]. J. Rheology, 1959, 3: 137-152. [89] 彭小飞, 俞小莉, 夏立峰, 等. 低浓度纳米流体黏度变化规律试验[J]. 农业机械学报, 2007, 38: 138-141. PENG Xiaofei, YU Xiaoli, XIA Lifeng, et al. Viscosity of low concentration nanofluids[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38: 138-141. [90] 郭顺松, 骆仲泱, 王涛, 等. SiO2纳米流体黏度研究[J]. 硅酸盐通报, 2006, 25: 52-55. GUO Shunsong, LUO Zhongyang, WANG Tao, et al. Viscosity of monodisperse silica nanofluids[J]. Bulletin of the Chinese Ceramic Society, 2006, 25: 52-55. [91] 刘玉东, 李夔宁, 童明伟, 等. TiO2-水纳米流体的黏度修正公式[J]. 重庆大学学报, 2006, 29: 52-55. LIU Yudong, LI Kuining, TONG Mingwei, et al. Viscosity- correction equations of TiO2-water nanofluids[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29: 52-55. [92] NAMBURU P K, KULKARNI D P, MISRA D, et al. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture[J]. Exp. Therm. Fluid Sci., 2007, 32: 397-402. [93] 饶坚, 陈沙鸥, 戚凭, 等. 分散剂(PMAA-NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响[J]. 青岛大学学报(自然科学版), 2003, 3: 37-39. RAO Jian, CHEN Sha’ou, Qi Ping, et al. Influence of pH values and dispersant mass fractions on dispersive property of nano-zirconia suspension[J]. Journal of Qingdao University(Natural Science Edition), 2003, 3: 37-39. [94] PENG X, YU X, XIA L, et al. Influence factors on suspension stability of nanofluids[J]. J. Zhejiang Univ.: Eng. Sci., 2007, 41: 577-580. [95] XIA G D, JIANG, H M, LIU R, et al. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids[J]. Int. J. Therm. Sci., 2014, 84: 118-124. [96] KIM H J , LEE S H, LEE J H, et al. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids[J]. Energy, 2015, 90: 1290-1297. [97] NOROOZI M, RADIMAN S, ZAKARIA A. Influence of sonication on the stability and thermal properties of Al2O3 nanofluids[J]. J. Nanomater., 2014, doi: 10.1155/2014/612417.
|
[1] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[2] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[3] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[4] | 熊良涛, 王继芬, 谢华清, 章学来. 空位缺陷对单层石墨烯导热特性影响的分子动力学[J]. 储能科学与技术, 2022, 11(5): 1322-1330. |
[5] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[6] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[7] | 孙颖, 赵钦, 尹博思, 马天翼. PTCDI//δ-MnO2 水系铵离子电池性能研究[J]. 储能科学与技术, 2022, 11(4): 1110-1120. |
[8] | 刘迪, 张甜甜, 彭宇维, 唐晓梅, 王丹, 毛承雄. 压缩空气储能系统释能环节轴系建模与振荡分析[J]. 储能科学与技术, 2022, 11(2): 563-572. |
[9] | 王翔, 徐晶, 陈新文, 丁亚军, 徐鑫. 基于VCHTC的锂电池热力学精细化仿真[J]. 储能科学与技术, 2022, 11(1): 246-252. |
[10] | 徐钿昕, 田希坤, 闫君, 叶强, 赵长颖. TiO2改性的CaCO3热化学储热的反应性能[J]. 储能科学与技术, 2022, 11(1): 1-8. |
[11] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[12] | 贾翔宇, 汪军水, 徐旸, 张剀. 接触参数对储能飞轮转子碰摩行为的影响[J]. 储能科学与技术, 2021, 10(5): 1643-1649. |
[13] | 郭丁彰, 尹钊, 周学志, 徐玉杰, 盛勇, 索文辉, 陈海生. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术, 2021, 10(5): 1486-1493. |
[14] | Al-jawfi Ibrahim, 赵佳琦, 师萌, 康晓红. Al掺杂锰酸锂材料在水系锂离子电池中的循环稳定性[J]. 储能科学与技术, 2021, 10(4): 1330-1337. |
[15] | 李伟辉, 钟兴国, 李会巧. 金属锂的钝化保护及应用[J]. 储能科学与技术, 2021, 10(3): 974-986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||