储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 871-888.doi: 10.12028/j.issn.2095-4239.2017.0084
麻亚挺,黄 健,刘 翔,刘鹏飞,蔡余新,谢清水,彭栋梁
收稿日期:
2017-06-01
修回日期:
2017-07-10
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
谢清水,助理教授,主要研究方向为纳米储能材料,E-mail:xieqsh@xmu.edu.cn;彭栋梁,教授,主要研究方向为磁性材料、纳米和低维功能材料、能源材料,E-mail:dlpeng@xmu.edu.cn。
作者简介:
麻亚挺(1991—),男,博士研究生,主要从事锂离子电池电极材料方面的研究,E-mail:mayating@stu.xmu.edu.cn
基金资助:
MA Yating, HUANG Jian, LIU Xiang, LIU Pengfei, CAI Yuxin, XIE Qingshui, PENG Dongliang
Received:
2017-06-01
Revised:
2017-07-10
Online:
2017-09-01
Published:
2017-09-01
摘要: 电动汽车和智能电网的快速发展对锂离子电池提出了更高的要求,即在拥有高能量密度和高功率密度的同时,兼有快速充放电和较高的安全性能。电极材料是电池性能的关键,金属氧化物因为拥有较高的比容量和安全性能,已经成为有希望替代传统商用石墨负极的新型电极材料。然而,金属氧化物负极的循环结构稳定性较差、电导率低,由此导致差的循环及倍率性能,极大地阻碍了其商业化应用。近年来,拥有微纳米空心结构的金属氧化物显示出了优异的电化学性能。本文介绍了制备空心结构金属氧化物的常用方法,讨论了各种方法的优缺点,并列举了常见空心结构金属氧化物作为锂离子电池负极时的性能表现,最后对空心结构金属氧化物未来的发展方向和发展前景予以展望。
麻亚挺,黄 健,刘 翔,刘鹏飞,蔡余新,谢清水,彭栋梁. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5): 871-888.
MA Yating, HUANG Jian, LIU Xiang, LIU Pengfei, CAI Yuxin, XIE Qingshui, PENG Dongliang. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 871-888.
[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
[2] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. [3] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334: 928-935. [4] LIU J, ZHANG J G, YANG Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid[J]. Advanced Functional Materials, 2013, 23: 929-946. [5] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499. [6] REDDY M V, SUBBA Rao G V, CHOWDARI B V. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews, 2013, 113: 5364-5457. [7] OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114 (23) : 11444. [8] IDOTA Y, KUBOTA T, MATSUFUJI A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997, 276: 1395-1397. [9] LIU J, LI W, MANTHIRAM A. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries[J]. Chemical Communications, 2010, 46: 1437-1439. [10] WEN Z, WANG Q, ZHANG Q, et al. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries[J]. Advanced Functional Materials, 2007, 17: 2772-2778. [11] KHAN M, TAHIR M N, ADIL S F, et al. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications[J]. Journal of Materials Chemistry A, 2015, 3: 18753-18808. [12] SHAO Q G, CHEN W M, WANG Z H, et al. SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries[J]. Electrochemistry Communications, 2011, 13: 1431-1434. [13] LI Y, SHI J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications[J]. Advanced Materials, 2014, 26: 3176-3205. [14] WANG H, WU Y, BAI Y, et al. The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials[J]. Journal of Materials Chemistry, 2011, 21: 10189-10194. [15] ZHANG F, QI L. Recent progress in self-supported metal oxide nanoarray electrodes for advanced lithium-ion batteries[J]. Advanced Science, 2016,3: doi: 10.1002/advs.201600049. [16] SUN Y, FENG X Y, CHEN C H. Hollow Co3O4 thin films as high performance anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 784-787. [17] WANG Y, LI H, HE P, et al. Nano active materials for lithium-ion batteries[J]. Nanoscale, 2010, 2: 1294-1305. [18] ZHANG Q, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42: 3127-3171. [19] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47: 2930-2946. [20] YIN Y X, XIN S, GUO Y G. Nanoparticles engineering for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2013, 30: 737-753. [21] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499. [22] SHUKLA A K, PREM K T. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2: 14-30. [23] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4: 366-377. [24] WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4: 2526-2542. [25] LIU J, XUE D. Hollow nanostructured anode materials for Li-ion batteries[J]. Nanoscale Research Letters, 2010, 5: 1525-1534. [26] WANG Z, ZHOU L. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24: 1903-1911. [27] YANG Z, NIU Z, LU Y, et al. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles[J]. Angewandte Chemie International Edition, 2003, 42: 1943-1945. [28] YANG M, MA J, ZHANG C, et al. General synthetic route toward functional hollow spheres with double-shelled structures[J]. Angewandte Chemie International Edition, 2005, 44: 6727-6730. [29] YANG M, MA J, NIU Z, et al. Synthesis of spheres with complex structures using hollow latex cages as templates[J]. Advanced Functional Materials, 2005, 15: 1523-1528. [30] DING S, ZHU T, CHEN J S, et al. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance[J]. Journal of Materials Chemistry, 2011, 21: 6602. [31] ZENG Y, WANG X, WANG H, et al. Multi-shelled titania hollow spheres fabricated by a hard template strategy: enhanced photocatalytic activity[J]. Chemical Communications, 2010, 46: 4312-4314. [32] LI Z, LAI X, WANG H, et al. General synthesis of homogeneous hollow core-shell ferrite microspheres[J]. The Journal of Physical Chemistry C, 2009, 113: 2792-2797. [33] DONG Z, LAI X, HALPERT J E, et al. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency[J]. Advanced Materials, 2012, 24: 1046-1049. [34] XU S, HESSEL C M, REN H, et al. α-Fe2O3multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energy & Environmental Science, 2014, 7: 632-637. [35] WANG J, TANG H, REN H, et al. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates[J]. Advanced Science, 2014, 1: 1400011. [36] WANG J, YANG N, TANG H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2013, 52: 6417-6420. [37] REN H, YU R, WANG J, et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries[J]. Nano Letters, 2014, 14: 6679-6684. [38] DONG Z, REN H, HESSEL C M, et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells[J]. Advanced Materials, 2014, 26: 905-909. [39] WANG Y, LEE J Y, ZENG H C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application[J]. Chemistry of Materials, 2005, 17: 3899-3903. [40] WANG Z, LUAN D, BOEY F Y, et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. Journal of the American Chemical Society, 2011, 133: 4738-4741. [41] WANG Z, LUAN D, LI C M, et al. Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching[J]. Journal of the American Chemical Society, 2010, 132: 16271-16277. [42] DING S, CHEN J S, QI G, et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. Journal of the American Chemical Society, 2010, 133: 21-23. [43] LOU X W, YUAN C, ARCHER L A. Double-walled SnO2 nano-cocoons with movable magnetic cores[J]. Advanced Materials, 2007, 19: 3328-3332. [44] FEI J B, CUI Y, YAN X H, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J]. Advanced Materials, 2008, 20: 452-456. [45] WANG L, TANG F, OZAWA K, et al. A general single-source route for the preparation of hollow nanoporous metal oxide structures[J]. Angewandte Chemie International Edition, 2009, 48: 7048-7051. [46] WANG B, CHEN J S, WU H B, et al. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties[J]. Journal of the American Chemical Society, 2011, 133: 17146-17148. [47] XU H, WANG W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall[J]. Angewandte Chemie International Edition, 2007, 46: 1489-1492. [48] WANG X, WU X L, GUO Y G, et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Advanced Functional Materials, 2010, 20: 1680-1686. [49] ZENG S, TANG K, LI T, et al. Hematite hollow spindles and microspheres: selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment[J]. The Journal of Physical Chemistry C, 2007, 111: 10217-10225. [50] LOU X W, WANG Y, YUAN C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18: 2325-2329. [51] CHEN Y, XIA H, LU L, et al. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22: 5006-5012. [52] XIE Q, LI J, TIAN Q, et al. Template-free synthesis of zinc citrate yolk-shell microspheres and their transformation to ZnO yolk-shell nanospheres[J]. Journal of Materials Chemistry, 2012, 22: 13541. [53] XIE Q, ZHANG X, WU X, et al. Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries[J]. Electrochimica Acta, 2014, 125: 659-665. [54] XIE Q, MA Y, ZHANG X, et al. ZnO/Ni/C composite hollow microspheres as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 619: 235-239. [55] XIE Q, GUO H, ZHANG X, et al. A facile approach to fabrication of well-dispersed NiO-ZnO composite hollow microspheres[J]. Rsc Advances, 2013, 3: 24430. [56] XIE Q, MA Y, ZENG D, et al. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties[J]. Scientific Reports, 2015, 5: 8351. [57] XIE Q, ZENG D, MA Y, et al. Synthesis of ZnO-ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties[J]. Electrochimica Acta, 2015, 169: 283-290. [58] XIE Q, MA Y, ZENG D, et al. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6: 19895-19904. [59] XIE Q, MA Y, WANG X, et al. Electrostatic assembly of sandwich-like Ag-C@ZnO-C@Ag-C hybrid hollow microspheres with excellent high-rate lithium storage properties[J]. Acs Nano, 2016, 10: 1283-1291. [60] YIN Y, RIOUX R M, ERDONMEZ C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect[J]. Science, 2004, 304: 711-714. [61] HUANG J, CHEN W, ZHAO W, et al. One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging iron nanoparticles in aqueous solution[J]. The Journal of Physical Chemistry C, 2009, 113: 12067-12071. [62] XIA X H, TU J P, MAI Y J, et al. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance[J]. Journal of Materials Chemistry, 2011, 21: 9319-9325. [63] SONG X, GAO L, MATHUR S. Synthesis, characterization, and gas sensing properties of porous nickel oxide nanotubes[J]. The Journal of Physical Chemistry C, 2011, 115: 21730-21735. [64] WU P, DU N, ZHANG H, et al. Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage[J]. Acs Applied Materials & Interfaces, 2011, 3: 1946-1952. [65] LIU Y, YANG Y. Recent progress of TiO2-based anodes for Li ion batteries[J]. Journal of Nanomaterials, 2016, 2016: 1-15. [66] LOU X W, ARCHER L A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles[J]. Advanced Materials, 2008, 20: 1853-1858. [67] WANG Z, LOU X W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties[J]. Advanced Materials, 2012, 24: 4124-4129. [68] YU X Y, WU H B, YU L, et al. Rutile TiO2 submicroboxes with superior lithium storage properties[J]. Angewandte Chemie International Edition, 2015, 54: 4001-4004. [69] ZHANG G, WU H B, SONG T, et al. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties[J]. Angewandte Chemie International Edition, 2014, 53: 12590-12593. [70] DING S, CHEN J S, WANG Z, et al. TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage[J]. Journal of Materials Chemistry, 2011, 21: 1677-1680. [71] CHEN J S, LOU X W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries[J]. Small, 2013, 9: 1877-1893. [72] ZHAO Q, MA L, ZHANG Q, et al. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries and supercapacitors[J]. Journal of Nanomaterials, 2015, 2015: 1-15. [73] LIU L, XIE F, LYU J, et al. Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries[J]. Journal of Power Sources, 2016, 321: 11-35. [74] ZHAO M, ZHAO Q, QIU J, et al. Tin-based nanomaterials for electrochemical energy storage[J]. Rsc Advances, 2016, 6: 95449-95468. [75] ZHONG Z, YIN Y, GATES B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J]. Advanced Materials, 2000, 12: 206-209. [76] WANG Y, SU F, LEE J Y, et al. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage[J]. Chemistry of Materials, 2006, 18: 1347-1353. [77] SUN X, LIU J, LI Y. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chemistry, 2006, 12: 2039-2047. [78] LOU X W, YUAN C, ARCHER L A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization[J]. Small, 2007, 3: 261-265. [79] YUAN C, WU H B, XIE Y, et al. Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53: 1488-1504. [80] XIE Q, MA Y, ZHANG X, et al. Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 141: 374-383. [81] MA Y, XIE Q, LIU X, et al. Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries[J]. Electrochimica Acta, 2015, 182: 327-333. [82] WANG Y, LI D, LIU Y, et al. Fabrication of novel rugby-like ZnSnO3/reduced graphene oxide composites as a high-performance anode material for lithium-ion batteries[J]. Materials Letters, 2016, 167: 222-225. [83] WANG Y, LI D, LIU Y, et al. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2016, 203: 84-90. [84] TIAN D, ZHOU X L, ZHANG Y H, et al. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries[J]. Inorganic Chemistry, 2015, 54: 8159-8161. [85] SHAO J, WAN Z, LIU H, et al. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage[J]. Journal of Materials Chemistry A, 2014, 2: 12194-12200. [86] WU R, QIAN X, RUI X, et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability[J]. Small, 2014, 10: 1932-1938. [87] YAN N, HU L, LI Y, et al. Co3O4 nanocages for high-performance anode material in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116: 7227-7235. [88] LOU X W, DENG D, LEE J Y, et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes[J]. Advanced Materials, 2008, 20: 258-262. [89] SUN H, SUN X, HU T, et al. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118: 2263-2272. [90] SASIDHARAN M, GUNAWARDHANA N, SENTHIL C, et al. Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 7337-7344. [91] XIE D, YUAN W, DONG Z, et al. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance[J]. Electrochimica Acta, 2013, 92: 87-92. [92] ZHONG C, WANG J Z, CHOU S L, et al. Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2010, 40: 1415-1419. [93] LIU L, GUO Y, WANG Y, et al. Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries[J]. Electrochimica Acta, 2013, 114: 42-47. [94] ZHANG L, WU H B, LOU X W D. Iron-oxide-based advanced anode materials for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4: 1300958. [95] ZHENG X, LI J. A review of research on hematite as anode material for lithium-ion batteries[J]. Ionics, 2014, 20: 1651-1663. [96] CHO J S, HONG Y J, KANG Y C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries[J]. Acs Nano, 2015, 9: 4026-4035. [97] ZHOU L, XU H, ZHANG H, et al. Cheap and scalable synthesis of alpha-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries[J]. Chemical Communications, 2013, 49: 8695-8697. [98] WANG B, WU H B, ZHANG L, et al. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks[J]. Angewandte Chemie International Edition, 2013, 52: 4165-4168. [99] ZHANG Q, SHI Z, DENG Y, et al. Hollow Fe3O4/C spheres as superior lithium storage materials[J]. Journal of Power Sources, 2012, 197: 305-309. [100] CHEN D, JI G, MA Y, et al. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries[J]. Acs Applied Materials & Interfaces, 2011, 3: 3078-3083. [101] XU J, GU P, ZHANG J, et al. Copper-based nanomaterials for high-performance lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2016, 33: 784-810. [102] JU J H, RYU K S. Synthesis and performance of CuO with complex hollow structure as anode material for lithium secondary batteries[J]. Journal of the Electrochemical Society, 2011, 158: A814-A817. [103] GUAN X, LI L, LI G, et al. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance[J]. Journal of Alloys and Compounds, 2011, 509: 3367-3374. [104] HU Y, HUANG X, WANG K, et al. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes[J]. Journal of Solid State Chemistry, 2010, 183: 662-667. [105] WANG J, LIU Y, WANG S, et al. Facile fabrication of pompon-like hierarchical CuO hollow microspheres for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 1224-1229. [106] WANG S Q, ZHANG J Y, CHEN C H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries[J]. Scripta Materialia, 2007, 57: 337-340. [107] ZHOU J, MA L, SONG H, et al. Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries[J]. Electrochemistry Communications, 2011, 13: 1357-1360. [108] DENG Y, WAN L, XIE Y, et al. Recent advances in Mn-based oxides as anode materials for lithium ion batteries[J]. Rsc Advances, 2014, 4: 23914-23935. [109] YUE J, GU X, CHEN L, et al. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 17421-17426. [110] JIAN G, XU Y, LAI L C, et al. Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity[J]. Journal of Materials Chemistry A, 2014, 2: 4627-4632. [111] SEKHAR B C, KALAISELVI N. Pristine hollow microspheres of Mn2O3 as a potential anode for lithium-ion batteries[J]. CrystEngComm, 2015, 17: 5038-5045. [112] QIAO Y, YU Y, JIN Y, et al. Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries[J]. Electrochimica Acta, 2014, 132: 323-331. [113] LIN H B, RONG H B, HUANG W Z, et al. Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 14189. [114] LI B, RONG G, XIE Y, et al. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries[J]. Inorganic Chemistry, 2006, 45: 6404-6410. [115] ZHOU L, WU H B, ZHU T, et al. Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22: 827-829. [116] CHEN X F, QIE L, ZHANG L L, et al. Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2013, 559: 5-10. [117] KIM M H, HONG Y J, KANG Y C. Electrochemical properties of yolk-shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries[J]. Rsc Advances, 2013, 3: 13110-13114. [118] ZHOU L, ZHAO D, LOU X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries[J]. Advanced Materials, 2012, 24: 745-748. [119] ZHANG J, GU P, XU J, et al. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries[J]. Nanoscale, 2016, 8: 18578-18595. [120] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature nanotechnology, 2012, 7: 310-315. [121] LI X, GU M, HU S, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes[J]. Nature Communications, 2014, 5: 4105. [122] LIU N, HU L, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS nano, 2011, 5: 6487-6493. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[15] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||