储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 889-903.doi: 10.12028/j.issn.2095-4239.2017.0088
聂 平,徐桂银,蒋江民,王 江,付瑞瑞,方 姗,窦 辉,张校刚
收稿日期:
2017-06-01
修回日期:
2017-06-15
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
张校刚,教授,研究方向为电化学储能材料与器件,E-mail:azhangxg@nuaa.edu.cn。
作者简介:
聂平(1985—),男,博士研究生,研究方向为锂离子、钠离子二次电池,E-mail:xdnieping2009@sina.com
基金资助:
NIE Ping, XU Guiyin, JIANG Jiangmin, WANG Jiang, FU Ruirui, FANG Shan, DOU Hui, ZHANG Xiaogang
Received:
2017-06-01
Revised:
2017-06-15
Online:
2017-09-01
Published:
2017-09-01
摘要: 开发具有高能量密度、高安全性和长循环寿命的锂离子电池成为当今储能领域的研究热点,高容量合金及转换反应材料引起了广泛的关注,主要包括硅基、锡基、金属氧化物等。与锂离子嵌入反应负极材料不同,在充放电过程中,这类材料存在较大的首次不可逆容量损失。首次不可逆容量损失消耗了大量的电解液和正极材料中脱出的锂离子,导致较低的库仑效率。锂的损失降低了电池的能量密度和循环寿命,从而严重制约了此类材料在高比能锂离子电池中的应用。预锂化技术为解决不可逆容量损失、提高库仑效率提供了有效的解决方案。本文重点综述了高容量合金和转换反应负极材料首次不可逆容量形成的原因以及近年来预锂化技术的最新研究进展,预锂化技术主要包括物理混合、稳定的金属锂粉、电化学预锂化、接触短路反应、化学预锂化以及新发展的预锂化添加材料等,并进一步总结了预锂化在基于高容量硅基负极的锂离子电池以及锂硫电池中的应用。系统分析预锂化技术的最新进展可为其它储能系统(离子电容器、钠离子电池、钾离子电池、锂空气电池等)的进一步发展提供科学参考和理论指导。
聂 平,徐桂银,蒋江民,王 江,付瑞瑞,方 姗,窦 辉,张校刚. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903.
NIE Ping, XU Guiyin, JIANG Jiangmin, WANG Jiang, FU Ruirui, FANG Shan, DOU Hui, ZHANG Xiaogang. Prelithiation technologies and application in high energy silicon anodes[J]. Energy Storage Science and Technology, 2017, 6(5): 889-903.
[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. [2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. [3] CABANA J, MONCONDUIT L, LARCHER D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): E170-E192. [4] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. [5] XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): 1601481. [6] LI J Y, XU Q, LI G, et al. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries[J]. Materials Chemistry Frontiers, 2017, doi: 10.1039/C6QM00302H. [7] XIAO Q, GU M, YANG H, et al. Inward lithium-ion breathing of hierarchically porous silicon anodes[J]. Nature Communications, 2015, 6: 8844. [8] BIE Y, YANG J, NULI Y, et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteriese[J]. Journal of Materials Chemistry A, 2017, 5(5): 1919-1924. [9] JIA H, GAO P, YANG J, et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039. [10] PENG Y, LE Z, WEN M, et al. Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage[J]. Nano Energy, 2017, 35: 44-51. [11] ARAVINDAN V, LEE Y S, MADHAVI S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-Ion batteries[J]. Advanced Energy Materials, 2017, 1602607. [12] 明海, 明军, 邱景义, 等. 预锂化技术在能源存储中的应用[J]. 储能科学与技术, 2017, 6(2): 223-236. MING Hai, MING Jun, QIU Jingyi, et al. Applications of pre-lithiation technologies in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. [13] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. [14] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. [15] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. [16] KULOVA T L, SKUNDIN A M. Irreversible capacity elimination via immediate contact of carbon with lithium metal[J]. Journal of Solid State Electrochemistry, 2003, 8(1): 59-65. [17] SUN H, HE X, REN J, et al. Hard carbon/lithium composite anode materials for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(13): 4312-4316. [18] DIMOV N, XIA Y, YOSHIO M, Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features[J]. Journal of Power Sources, 2007, 171(2): 886-893. [19] KULOVA T L, SKUNDIN A M. Elimination of irreversible capacity of amorphous silicon: Direct contact of the silicon and lithium metal[J]. Russian Journal of Electrochemistry, 2010, 46(4): 470-475. [20] HU L, AMINE K, ZHANG Z. Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement of LiNi0.5Mn1.5O4/graphite cell performance by a lithium reservoir[J]. Electrochemistry Communications, 2014, 44: 34-37. [21] VAUGHEY J T, LIU G, ZHANG J G. Stabilizing the surface of lithium metal[J]. Mrs Bulletin, 2014, 39(5): 429-435. [22] LI Y, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667. [23] JARVIS C R, LAIN M J, YAKOVLEVA M V , et al. A prelithiated carbon anode for lithium-ion battery applications[J]. Journal of Power Sources, 2006, 162(2): 800-802. [24] JARVIS C R, LAIN M J, GAO Y , et al. A lithium ion cell containing a non-lithiated cathode[J]. Journal of Power Sources, 2005, 146(1/2): 331-334. [25] XIANG B, WANG L, LIU G , et al. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM[J]. Journal of the Electrochemical Society, 2013, 160(3): A415-A419. [26] ZHAO H, WANG Z, LU P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design[J]. Nano Letters, 2014, 14(11): 6704-6710. [27] YERSAK T A, SON S B, CHO J S, et al. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode[J]. Journal of the Electrochemical Society, 2013, 160(9): A1497-A1501. [28] FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder(SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163. [29] GITTLESON F S, HWANG D, RYU W H , et al. Ultrathin nanotube/nanowire electrodes by spin-spray layer-by-layer assembly: A concept for transparent energy storage[J]. Acs Nano, 2015, 9(10): 10005-10017. [30] CHEAH Y L, ARAVINDAN V, MADHAVI S. Synthesis and enhanced lithium storage properties of electrospun V2O5 nanofibers in full-cell assembly with a spinel Li4Ti5O12 anode[J]. Acs Applied Materials & Interfaces, 2013, 5(8): 3475-3480. [31] VARZI A, BRESSER D, VON ZAMORY J, et al. ZnFe2O4-C/LiFePO4-CNT: A novel high-power lithium-ion battery with excellent cycling performance[J]. Advanced Energy Materials, 2014, 4(10): 1400054. [32] ZHANG J, ZHANG C, WU S, et al. High-columbic-efficiency lithium battery based on silicon particle materials[J]. Nanoscale Research Letters, 2015, 10(1): 395. [33] LIU C, GILLETTE E I, CHEN X, et al. An all-in-one nanopore battery array[J]. Nature Nanotechnology, 2014, 9(12): 1031-1039. [34] REN J J, SU L W, QIN X, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sources, 2014, 264: 108-113. [35] LE Z, LIU F, NIE P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors[J]. Acs Nano, 2017, 11(3): 2952-2960. [36] LIU N, HU L, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. Acs Nano, 2011, 5(8): 6487-6493. [37] OAKES L, HANKEN T, CARTER R, et al. Roll-to-roll nanomanufacturing of hybrid nanostructures for energy storage device design[J]. Acs Applied Materials & Interfaces, 2015, 7(26): 14201-14210. [38] ORTIZ G F, BERENGUER-MURCIA Á, CABELLO M, et al. Ordered mesoporous titanium oxide for thin film microbatteries with enhanced lithium storage[J]. Electrochimica Acta, 2015, 166: 293-301. [39] HU R, SUN W, LIU H, et al. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries[J]. Nanoscale, 2013, 5(23): 11971-11979. [40] VARGAS Ó, CABALLERO Á, MORALES J, et al. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6(5): 3290-3298. [41] VARGAS Ó, CABALLERO Á, MORALES J. Deficiencies of chemically reduced graphene as electrode in full Li-ion cells[J]. Electrochimica Acta, 2015, 165: 365-371. [42] YUAN M, LIU W, ZHU Y, et al. Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors[J]. Russian Journal of Electrochemistry, 2014, 50(11): 1050-1057. [43] 蒋江民, 聂平, 董升阳, 吴宇婷, 张校刚. 预嵌锂用穿孔集流体对锂离子电容器电化学性能的影响[J]. 物理化学学报, 2017, 33(4): 780-786. JIANG Jiangnin, NIE Ping, DONG Shengyang, WU Yuting, ZHANG Xiaogang. Effect of pre-punched current collector for lithiation on the electrochemical performance of lithium-ion capacitor[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 780-786. [44] KIM K T, ALI G, CHUNG K Y, et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries[J]. Nano Letters, 2014, 14(2): 416-422. [45] HWANG J Y, OH S M, MYUNG S T, et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries[J]. Nature Communications, 2015, 6: 6865. [46] OH S M, MYUNG S T, YOON C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano Letters, 2014, 14(3): 1620-1626. [47] KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters, 2016, 16(1): 282-288. [48] ZHAO J, LU Z, LIU N , et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nature Communications, 2014, 5: 5088. [49] ZHAO J, LU Z, WANG H , et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(26): 8372-8375. [50] ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7408-7413. [51] CAO Z, XU P, ZHAI H, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240. [52] MAI L Q, HU B, CHEN W, et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J]. Advanced Materials, 2007, 19(21): 3712-3716. [53] MAI L, XU L, HU B, et al. Improved cycling stability of nanostructured electrode materials enabled by prelithiation[J]. Journal of Materials Research, 2011, 25(8): 1413-1420. [54] WU Z S, XUE L, REN W, et al. A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries[J]. Advanced Functional Materials, 2012, 22(15): 3290-3297. [55] TANG W S, CHOTARD J N, JANOT R. Synthesis of single-phase lisi by ball-milling: Electrochemical behavior and hydrogenation properties[J]. Journal of the Electrochemical Society, 2013, 160(8): A1232-A1240. [56] FAN X, SHAO J, XIAO X, et al. SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries[J]. Nano Energy, 2014, 9: 196-203. [57] CLOUD J E, WANG Y, LI X, et al. Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation[J]. Inorganic Chemistry, 2014, 53(20): 11289-11297. [58] LI X, KERSEY-BRONEC F E, KE J, et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(19): 16071-16080. [59] SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: 15008. [60] SUN Y, LEE H W, ZHENG G, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. [61] SUN Y, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): 1600154. [62] PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. [63] SUN Y, LI Y, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. [64] WU Z, JI S, ZHENG J, et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability[J]. Nano Letters, 2015, 15(8): 5590-5596. [65] ARAVINDAN V, NAN S, KEPPELER M, et al. Pre-lithiated LixMn2O4: A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery[J]. Electrochimica Acta, 2016, 208: 225-230. [66] ARAVINDAN V, ARUN N, SHUBHA N, et al. Overlithiated Li1+xNi0.5Mn1.5O4 in all one dimensional architecture with conversion type α-Fe2O3: A new approach to eliminate irreversible capacity loss[J]. Electrochimica Acta, 2016, 215: 647-651. [67] FANG S, SHEN L, TONG Z, et al. Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability[J]. Nanoscale, 2015, 7(16): 7409-7414. [68] FANG S, SHEN L, XU G, et al. Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries[J]. Acs Applied Materials & Interfaces, 2014, 6(9): 6497-6503. [69] NIE P, LIU X, FU R, et al. Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries[J]. Acs Energy Letters, 2017, 1279-1287. [70] ZHENG H, FANG S, TONG Z, et al. Porous silicon@polythiophene core-shell nanospheres for lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2016, 33(2): 75-81. [71] ZHENG H, FANG S, TONG Z, et al. Stabilized titanium nitride nanowire supported silicon core-shell nanorods as high capacity lithium-ion anodes[J]. Journal of Materials Chemistry A, 2015, 3(23): 12476-12481. [72] FANG S, TONG Z, NIE P, et al. Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(22): 18766-18733. [73] WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542. [74] CHEN G, YAN L, LUO H, et al. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage[J]. Advanced Materials, 2016, 28(35): 7580-7602. [75] CHAE C, NOH H J, LEE J K, et al. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014, 24(20): 3036-3042. [76] RYU J, HONG D, CHOI S, et al. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes[J]. Acs Nano, 2016, 10(2): 2843-2851. [77] LIANG J, LI X, HOU Z, et al. A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries[J]. Acs Nano, 2016, 10(2): 2295-2304. [78] PIPER D M, EVANS T, LEUNG K, et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries[J]. Nature Communications, 2015, 6: 6230. [79] LU J, CHEN Z, MA Z, et al. The role of nanotechnology in the development of battery materials for electric vehicles[J]. Nature Nanotechnology, 2016, 11(12): 1031-1038. [80] XU G, DING B, PAN J, et al. High performance lithium-sulfur batteries: Advances and challenges[J]. Journal of Materials Chemistry A, 2014, 2(32): 12662-12676. [81] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. [82] LIU F, XIAO Q, WU H B, et al. Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life[J]. Acs Nano, 2017, 11(3): 2697-2705. [83] XU G, YUAN J, TAO X, et al. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries[J]. Nano Research, 2015, 8(9): 3066-3074. [84] XU G, YAN Q B, KUSHIMA A, et al. Conductive graphene oxide-polyacrylic acid(GOPAA)binder for lithium-sulfur battery[J]. Nano Energy, 2017, 31, 568-574. [85] SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071. [86] YANG Y, MCDOWELL M T, JACKSON A, et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy[J]. Nano Letters, 2010, 10(4): 1486-1491. [87] PU X, YANG G, YU C. Safe and reliable operation of sulfur batteries with lithiated silicon[J]. Nano Energy, 2014, 9: 318-324. [88] SHEN C, GE M, ZHANG A, et al. Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density[J]. Nano Energy, 2016, 19: 68-77. [89] BRCKNER J, THIEME S, BTTGER-HILLER F, et al. Carbon-based anodes for lithium sulfur full cells with high cycle stability[J]. Advanced Functional Materials, 2014, 24(9): 1284-1289. [90] LEE S K, OH S M, PARK E, et al. Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiOx nanosphere anode[J]. Nano Letters, 2015, 15(5): 2863-2868. [91] KRAUSE A, DRFLER S, PIWKO M, et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability[J]. Scientific Reports, 2016, 6: 27982. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||