储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 889-903.doi: 10.12028/j.issn.2095-4239.2017.0088

• 特约文章 • 上一篇    下一篇

预锂化技术及其在高比能硅负极中的应用

聂  平,徐桂银,蒋江民,王  江,付瑞瑞,方  姗,窦  辉,张校刚   

  1. 南京航空航天大学材料科学与技术学院,江苏 南京 210016
  • 收稿日期:2017-06-01 修回日期:2017-06-15 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 张校刚,教授,研究方向为电化学储能材料与器件,E-mail:azhangxg@nuaa.edu.cn。
  • 作者简介:聂平(1985—),男,博士研究生,研究方向为锂离子、钠离子二次电池,E-mail:xdnieping2009@sina.com
  • 基金资助:
    国家973计划(2014CB239701),国家自然科学基金(51372116,51672128),江苏省普通高校研究生科研创新计划(KYLX_0254),南京航空航天大学博士学位论文创新与创优基金(BCXJ14-12)及研究生创新基地(实验室)开放基金项目(kfjj20170607)。

Prelithiation technologies and application in high energy silicon anodes

NIE Ping, XU Guiyin, JIANG Jiangmin, WANG Jiang, FU Ruirui, FANG Shan, DOU Hui, ZHANG Xiaogang   

  1. College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,Jiangsu, China
  • Received:2017-06-01 Revised:2017-06-15 Online:2017-09-01 Published:2017-09-01

摘要: 开发具有高能量密度、高安全性和长循环寿命的锂离子电池成为当今储能领域的研究热点,高容量合金及转换反应材料引起了广泛的关注,主要包括硅基、锡基、金属氧化物等。与锂离子嵌入反应负极材料不同,在充放电过程中,这类材料存在较大的首次不可逆容量损失。首次不可逆容量损失消耗了大量的电解液和正极材料中脱出的锂离子,导致较低的库仑效率。锂的损失降低了电池的能量密度和循环寿命,从而严重制约了此类材料在高比能锂离子电池中的应用。预锂化技术为解决不可逆容量损失、提高库仑效率提供了有效的解决方案。本文重点综述了高容量合金和转换反应负极材料首次不可逆容量形成的原因以及近年来预锂化技术的最新研究进展,预锂化技术主要包括物理混合、稳定的金属锂粉、电化学预锂化、接触短路反应、化学预锂化以及新发展的预锂化添加材料等,并进一步总结了预锂化在基于高容量硅基负极的锂离子电池以及锂硫电池中的应用。系统分析预锂化技术的最新进展可为其它储能系统(离子电容器、钠离子电池、钾离子电池、锂空气电池等)的进一步发展提供科学参考和理论指导。

关键词: 预锂化, 库仑效率, 硅负极, 锂离子电池, 锂硫电池

Abstract: Nowadays, there is an ever-growing demand for lithium ion batteries (LIBs) with even higher energy densities, safety, and longer cycle life. Electrode materials, such as silicon, tin, and metal oxides, based on either conversion or alloying mechanism have attracted widespread attention for LIB anodes due to their high theoretical capacities. Unlike the conventional intercalation mechanisms, a large irreversible capacity loss (ICL) in the first cycle is one of the prime issues for this type of negative electrodes. Electrolyte decomposition and the consumption of an excess amount of cathode material occur in an irreversible manner for the first cycle, and thereby leading to a low first cycle Columbic efficiency and large initial ICL. Lithium loss in the initial cycles appreciably reduces the energy density and cycling life, severely hindering practical applications in high energy LIBs. Prelithiation provide an effective solution to address these problems above. This review covers origins of irreversible capacity loss in alloying and conversion based materials, key technological developments, and scientific challenges regarding various prelithiation technologies, including physical blending, stabilized lithium-metal powder (SLMP), electrochemical lithiation, self-discharge mechanism, chemical lithiation, and recently new developed anode/cathode prelithiation additives. Furthermore, we also summarize their application for mitigating irreversible capacity loss of silicon based anodes in high energy Li-ion batteries and lithium sulfur batteries. It is highly significant to discuss recent advancements and future prospects of prelithiation technology, which will provide some general academic reference and principles for further development of other energy storage devices, e.g., ion capacitors, sodium ion batteries, potassium ion batteries, and lithium-air batteries.

Key words: prelithiation, coulombic efficiency, silicon anode, lithium ion batteries, lithium sulfur batteries