储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 904-923.doi: 10.12028/j.issn.2095-4239.2017.00959
陈 祥,雷凯翔,孙洪明,程方益,陈 军
收稿日期:
2017-06-07
修回日期:
2017-07-29
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
程方益,研究员,主要研究方向为功能材料与化学电源,E-mail:fycheng@nankai.edu.cn。
作者简介:
陈祥(1989—),男,博士研究生,主要研究方向为电催化与金属空气电池,E-mail:cx9528@mail.nankai.edu.cn
基金资助:
CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun
Received:
2017-06-07
Revised:
2017-07-29
Online:
2017-09-01
Published:
2017-09-01
摘要: 金属-空气电池具有高能量密度,是极具吸引力的电化学能量储存与转化器件,阴极反应动力学缓慢是制约其性能的关键因素之一,需要使用高效催化剂。本文简要介绍金属-空气电池的结构和工作原理,并综述近年来尖晶石型金属氧化物阴极催化剂的研究进展。
陈 祥,雷凯翔,孙洪明,程方益,陈 军. 尖晶石型氧化物催化剂与金属-空气电池[J]. 储能科学与技术, 2017, 6(5): 904-923.
CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun. Spinel-type transition metal oxide electrocatalysts for metal-air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 904-923.
[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. [2] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11: 19-29. [3] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2008, 47: 2930-2946. [4] WAGNER F T, LAKSHMANAN B, MATHIAS M F. Electrochemistry and the future of the automobile[J]. J. Phys. Chem. Lett., 2010, 1: 2204-2219. [5] CHRISTENSEN J, ALBERTUS P, SANCHEZ-CARRERA R S, et al. A critical review of Li/air batteries[J]. Journal of the Electrochemical Society, 2012, 159: R1-R30. [6] LI Y, DAI H. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43: 5257-5275. [7] RAHMAN M A, WANG X, WEN C. High energy density metal-air batteries: A review[J]. Journal of the Electrochemical Society, 2013, 160: A1759-A1771. [8] SONG M K, PARK S, ALAMGIR F M, et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives[J]. Materials Science & Engineering R-Reports, 2011, 72: 203-252. [9] CHENG F, CHEN J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41: 2172-2192. [10] 魏子栋, 李莉, 李兰兰, 等. 氧电极催化材料的研究现状[J]. 电源技术, 2004(2): 116-120. WEI Z D, LI L, LI L L, et al. State-of-art of electrocatalysts for oxygen electrode[J]. Chinese Journal of Power Sources, 2004(2): 116-120. [11] 张涛, 张晓平, 温兆银. 固态锂空气电池研究进展[J]. 储能科学与技术, 2016, 5(5): 702-712. ZHANG T, ZHANG X P, WEN Z Y. Progress in rechargeable solid-state lithium-air battery[J]. Energy Storage Science and Technology, 2016, 5(5): 702-712. [12] 马景灵, 许开辉, 文九巴, 等. 铝空气电池的研究进展[J]. 电源技术, 2012, 36(1): 139-141. MA J L, XU K H, WEN J B, et al. Progress of research on aluminum air batteries[J]. Chinese Journal of Power Sources, 2012, 36(1): 139-141. [13] 刘春娜. 锌空气电池技术进展[J]. 电源技术, 2012, 36(6): 782-783. LIU C N. Progress in zinc air battery technology[J]. Chinese Journal of Power Sources, 2012, 36(6): 782-783. [14] 朱明骏, 袁振善, 桑林, 等. 金属/空气电池的研究进展[J]. 电源技术, 2012, 36(12): 1953-1955. ZHU M J, YUAN Z S, SANG L, et al. Research progress of metal/air battery[J]. Chinese Journal of Power Sources, 2012, 36(12): 1953-1955. [15] CHEN J Y C, MILLER J T, GERKEN J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7: 1382-1386. [16] CUI B, LIN H, LI J B, et al. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications[J]. Advanced Functional Materials, 2008, 18: 1440-1447. [17] LIU Y, CAO L J, CAO C W, et al. Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries[J]. Chemical Communications, 2014, 50: 14635-14638. [18] MAIYALAGAN T, JARVIS K A, THERESE S, et al. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions[J]. Nature Communications, 2014, 5: 3949-3956. [19] YAN X, JIA Y, CHEN J, et al. Defective-activated-carbon-supported Mn-Co nanoparticles as a highly efficient electrocatalyst for oxygen reduction[J]. Advanced Materials, 2016, 28: 8771-8778. [20] YANG H, HU F, ZHANG Y, et al. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts[J]. Nano Research, 2016, 9: 207-213. [21] ZHAO A, MASA J, XIA W, et al. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting[J]. Journal of the American Chemical Society, 2014, 136: 7551-7554. [22] DU J, CHEN C, CHENG F, et al. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene[J]. Inorganic Chemistry, 2015, 54: 5467-5474. [23] ZHANG K, HAN X, HU Z, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2015, 44: 699-728. [24] HAN X, CHENG F, CHEN C, et al. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries[J]. Nano Research, 2015, 8: 156-164. [25] HAN X, HU Y, YANG J, et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries[J]. Chemical Communications, 2014, 50: 1497-1499. [26] HU X, CHENG F, HAN X, et al. Oxygen bubble-templated hierarchical porous epsilon-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015, 11: 809-813. [27] HU X, CHENG F, ZHANG N, et al. Nanocomposite of Fe2O3@C@MnO2 as an efficient cathode catalyst for rechargeable lithium-oxygen batteries[J]. Small, 2015, 11: 5545-5550. [28] HU X, HAN X, HU Y, et al. Epsilon-MnO2 nanostructures directly grown on Ni foam: A cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2014, 6: 3522-3525. [29] HU X, WANG J, LI T, et al. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries[J]. Nano Letters, 2017, 17: 2073-2078. [30] HU Y, ZHANG T, CHENG F, et al. Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries[J]. Angewandte Chemie-International Edition, 2015, 54: 4338-4343. [31] JIN Q, PEI L, HU Y, et al. Solvo/hydrothermal preparation of MnOx@rGO nanocomposites for electrocatalytic oxygen reduction[J]. Acta Chimica Sinica, 2014, 72: 920-926. [32] 程方益, 陈军. 可充锂空气电池多孔纳米催化剂[J]. 化学学报, 2013, 71(4): 473-477 CHENG F Y, CHEN J. Nanoporous catalysts for rechargeable Li-air batteries[J. Acta Chimica Sinica, 2013, 71(4): 473-477. [33] 张三佩, 温兆银. 钠-空气电池研究评述[J]. 储能科学与技术, 2016, 5(3): 249-257. ZHANG S P, WEN Z Y. Review on sodium-air battery[J]. Energy Storage Science and Technology, 2016, 5(3): 249-257. [34] YADEGARI H, LI Y, BANIS M N, et al. On rechargeability and reaction kinetics of sodium-air batteries[J]. Energy & Environmental Science, 2014, 7: 3747-3757. [35] YANG S, SIEGEL D J. Intrinsic conductivity in sodium-air battery discharge phases: sodium superoxide vs sodium peroxide[J]. Chemistry of Materials, 2015, 27: 3852-3860. [36] FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma.201604685. [37] LIU Q, WANG Y, DAI L, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries[J]. Advanced Materials, 2016, 28: 3000-3006. [38] MENG F, ZHONG H, BAO D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries[J]. Journal of the American Chemical Society, 2016, 138: 10226-10231. [39] LI W, LI C, ZHOU C, et al. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/air battery applications[J]. Angewandte Chemie-International Edition, 2006, 45: 6009-6012. [40] SHIGA T, HASE Y, YAGI Y, et al. Catalytic cycle employing a TEMPO-anion complex to obtain a secondary Mg-O2 battery[J]. Journal of Physical Chemistry Letters, 2014, 5: 1648-1652. [41] ZHANG T, TAO Z, CHEN J. Magnesium-air batteries: From principle to application[J]. Materials Horizons, 2014, 1: 196-206. [42] EGAN D R, DE LEON C P, WOOD R J K, et al. Developments in electrode materials and electrolytes for aluminium-air batteries[J]. Journal of Power Sources, 2013, 236: 293-310. [43] 王诚, 邱平达, 蔡克迪, 等. 铝空气电池关键技术研究进展[J]. 化工进展, 2016, 35(5): 1396-1403. WANG C, QIU P D, CAI K D, et al. Research progress of the key technologies for aluminum air battery[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1396-1403. [44] YUAN J, WANG J, SHE Y, et al. BiOCl micro-assembles consisting, of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al-air batteries[J]. Journal of Power Sources, 2014, 263: 37-45. [45] ZHANG Z, ZUO C, LIU Z, et al. All-solid-state Al-air batteries with polymer alkaline gel electrolyte[J]. Journal of Power Sources, 2014, 251: 470-475. [46] BUI THI H, DOAN HA T, NGUYEN TUYET N, et al. Nanoparticle Fe2O3-loaded carbon nanofibers as iron-air battery anodes[J]. Journal of the Electrochemical Society, 2013, 160: A1442-A1445. [47] HANG B T, WATANABE T, EASHIRA M, et al. The electrochemical properties of Fe2O3-loaded carbon electrodes for iron-air battery anodes[J]. Journal of Power Sources, 2005, 150: 261-271. [48] BLURTON K F, SAMMELLS A F. Metal/air batteries: Their status and potential—A review[J]. Journal of Power Sources, 1979, 4: 263-279. [49] SPENDELOW J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry Chemical Physics, 2007, 9: 2654-2675. [50] CHRISTENSEN P A, HAMNETT A, LINARES-MOYA D. Oxygen reduction and fuel oxidation in alkaline solution[J]. Physical Chemistry Chemical Physics, 2011, 13: 5206-5214. [51] VIELSTICH W, YOKOKAWA H, GASTEIGER H A. Handbook of fuel cells: Fundamentals technology and applications[M]. New York: John Wiley & Sons, 2009. [52] LIMA F H B, CALEGARO M L, TICIANELLI E A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochimica Acta, 2007, 52: 3732-3738. [53] CHENG F, SHEN J, JI W, et al. Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction[J]. Acs Applied Materials & Interfaces, 2009, 1: 460-466. [54] CHENG F, SU Y, LIANG J, et al. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media[J]. Chemistry of Materials, 2010, 22: 898-905. [55] LAOIRE C O, MUKERJEE S, ABRAHAM K M. Elucidating the mechanism of oxygen reduction for lithium-air battery applications[J]. Journal of Physical Chemistry C, 2009, 113: 20127-20134. [56] LAOIRE C O, MUKERJEE S, ABRAHAM K M. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. Journal of Physical Chemistry C, 2010, 114: 9178-9186. [57] LU Y C, GASTEIGER H A, SHAO-HORN Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries[J]. Journal of the American Chemical Society, 2011, 133: 19048-19051. [58] 张三佩, 温兆银, 俊靳, 等. 二次钠空气电池的研究进展[J]. 电化学, 2015, 21: 425-431. ZHANG S P, WEN Z Y, JIN J, et al. The research progress of secondary sodium/air batteries[J]. Journal of Electrochemistry, 2015, 21: 425-432. [59] HARTMANN P, BENDER C L, VRAČAR M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 2013, 12: 228-232. [60] 高婧, 吴晓梅, 邹建新, 等. 镁空气电池空气阴极研究进展[J]. 电源技术, 2016, 40: 1148-1151. GAO J, WU X M, ZOU J X, et al. Research progress of air cathodes for magnesium-air batteries[J]. Chinese Journal of Power Sources, 2016, 40: 1148-1151. [61] DU J, PAN Y, ZHANG T, et al. Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction[J]. Journal of Materials Chemistry, 2012, 22: 15812-15818. [62] 王洪波, 程方益, 陶占良, 等. 空心ZnMn2O4纳米球和纳米立方体的室温合成及氧还原催化性能[J]. 高等学校化学学报, 2011, 32: 595-600. WANG H B, CHENG F Y, TAO Z L, et al. Room-temperature synthesis and oxygen-reduction catalytic performance of hollow ZnMn2O4 nanospheres and nanocubes[J]. Chemical Journal of Chinese Universities-Chinese, 2011, 32: 595-600. [63] HILL R J, CRAIG J R, GIBBS G. Systematics of the spinel structure type[J]. Physics and chemistry of minerals, 1979, 4: 317-339. [64] SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. Journal of the American Ceramic Society, 1999, 82: 3279-3292. [65] GOODENOUGH J B, LOEB A L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels[J]. Physical Review, 1955, 98: 391-408. [66] GRIMES R W, ANDERSON A B, HEUER A H. Predictions of cation distributions in AB2O4 spinels from normalized ion energies[J]. Journal of the American Chemical Society, 1989, 111: 1-7. [67] SEKO A, YUGE K, OBA F, et al. Prediction of ground-state structures and order-disorder phase transitions in II-III spinel oxides: A combined cluster-expansion method and first-principles study[J]. Physical Review B, 2006, 73: 184117-184121. [68] BURNS R G, Mineralogical applications of crystal field theory[M]. UK: Cambridge University Press, 1993. [69] SHAO M H, SASAKI K, ADZIC R R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2006, 128: 3526-3527. [70] ARIC A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4: 366-377. [71] STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6: 241-247. [72] CHEN S, FERREIRA P J, SHENG W, et al. Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures[J]. Journal of the American Chemical Society, 2008, 130: 13818-13819. [73] WANG J X, INADA H, WU L, et al. Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, facet, and Pt shell thickness effects[J]. Journal of the American Chemical Society, 2009, 131: 17298-17302. [74] GE X, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts[J]. ACS Catalysis, 2015, 5: 4643-4667. [75] WANG H Y, HUNG S F, CHEN H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. Journal of the American Chemical Society, 2016, 138: 36-39. [76] YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011, 133: 5587-5593. [77] CHEN R, WANG H Y, MIAO J, et al. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires[J]. Nano Energy, 2015, 11: 333-340. [78] GAO X, ZHANG H, LI Q, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie-International Edition, 2016, 55: 6290-6294. [79] CHENG F, CHEN J. Nanoporous catalysts for rechargeable Li-air batteries[J]. Acta Chimica Sinica, 2013, 71: 473-477. [80] HAN X, ZHANG T, DU J, et al. Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high activity[J]. Chemical Science, 2013, 4: 368-376. [81] CHEN S, ZHAO Y, SUN B, et al. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries and oxygen evolution reactions[J]. Acs Applied Materials & Interfaces, 2015, 7: 3306-3313. [82] ROSEN J, HUTCHINGS G S, JIAO F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2013, 135: 4516-4521. [83] SHI J, LEI K, SUN W, et al. Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution[J]. Nano Research, 2017, doi: 10.1007/s12274-017-1597-0. [84] KOZA J A, HE Z, MILLER A S, et al. Electrodeposition of crystalline Co3O4—A catalyst for the oxygen evolution reaction[J]. Chemistry of Materials, 2012, 24: 3567-3573. [85] SU D, DOU S, WANG G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries[J]. Scientific Reports, 2014, 4: 5767-5775. [86] CHEN Z, KRONAWITTER C X, KOEL B E. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction[J]. Physical Chemistry Chemical Physics, 2015, 17: 29387-29393. [87] ALEJANDRO MONTOYA, HAYNES B S. Periodic density functional study of Co3O4 surfaces[J]. Chemical Physics Letters, 2011, 502: 63-68. [88] LI L,WEI Z,CHEN S, et al. A comparative DFT study of the catalytic activity of MnO2 (211) and (2-2-1) surfaces for an oxygen reduction reaction[J]. Chemical Physics Letters, 2012, 539-540: 89-93. [89] LI C, HAN X, CHENG F, et al. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis[J]. Nature Communication, 2015, 6: 7345-7352. [90] WU G, WANG J, DING W, et al. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal[J]. Angewandte Chemie International Edition, 2016, 55: 1340-1344. [91] CHENG F, SHEN J, PENG B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nature Chemistry, 2011, 3: 79-84. [92] BAO J, ZHANG X, FAN B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angewandte Chemie-International Edition, 2015, 54: 7399-7404. [93] CHENG H, SU Y Z, KUANG P Y, et al. Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation[J]. Journal of Materials Chemistry A, 2015, 3: 19314-19321. [94] LEE D U, KIM B J, CHEN Z. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst[J]. Journal of Materials Chemistry A, 2013, 1: 4754-4762. [95] ZHANG H, LI H, WANG H, et al. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2015, 280: 640-648. [96] ZHANG H, QIAO H, WANG H, et al. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery[J]. Nanoscale, 2014, 6: 10235-10242. [97] HAN X, WU X, ZHONG C, et al. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Nano Energy, 2017, 31: 541-550. [98] LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10: 780-786. [99] CHEN S, QIAO S Z. Hierarchically porous nitrogen-doped graphene NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material[J]. Acs Nano, 2013, 7: 10190-10196. [100] KIM J G, NOH Y, KIM Y, et al. Fabrication of three-dimensional ordered macroporous spinel CoFe2O4 as efficient bifunctional catalysts for the positive electrode of lithium-oxygen batteries[J]. Nanoscale, 2017, 9: 5119-5128. [101] WANG P X, SHAO L, ZHANG N Q, et al. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries[J]. Journal of Power Sources, 2016, 325: 506-512. [102] PARK M G, LEE D U, SEO M H, et al. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries[J]. Small, 2016, 12: 2707-2714. [103] FU J, HASSAN F M, LI J, et al. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array[J]. Advanced Materials, 2016, 28: 6421-6428. [104] ABIRAMI M, HWANG S M, YANG J, et al. A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na-air/seawater batteries[J]. ACS Applied Materials & Interfaces, 2016, 8: 32778-32787. [105] HUANG Z, CHI B, JIAN L, et al. CoFe2O4@multi-walled carbon nanotubes integrated composite with nanosized architecture as a cathode material for high performance rechargeable lithium-oxygen battery[J]. Journal of Alloys and Compounds, 2017, 695: 3435-3444. [106] JADHAV H S, KALUBARME R S, JADHAV A H, et al. Iron-nickel spinel oxide as an electrocatalyst for non-aqueous rechargeable lithium-oxygen batteries[J]. Journal of Alloys and Compounds, 2016, 666: 476-481. [107] JADHAV H S, KALUBARME R S, ROH J W, et al. Facile and cost effective synthesized mesoporous spinel NiCo2O4 as catalyst for non-aqueous lithium-oxygen batteries[J]. Journal of the Electrochemical Society, 2014, 161: A2188-A2196. [108] KALUBARME R S, JADHAV H S, DUC TUNG N, et al. Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li-O2 batteries with long-term stability[J]. Scientific Reports, 2015, 5: 13266-13277. [109] LI J, ZOU M, WEN W, et al. Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2: 10257-10262. [110] LI P, SUN W, YU Q, et al. An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li-O2 batteries[J]. Solid State Ionics, 2016, 289: 17-22. [111] LUO Y, LU F, JIN C, et al. NiCo2O4@La0.8Sr0.2MnO3 core-shell structured nanorods as efficient electrocatalyst for Li-O2 battery with enhanced performances[J]. Journal of Power Sources, 2016, 319: 19-26. [112] WANG L, ZHU T, LYU Z, et al. Facile synthesis of flower-like hierarchical NiCo2O4 microspheres as high-performance cathode materials for Li-O2 batteries[J]. RSC Advances, 2016, 6: 98867-98873. [113] ZHANG J, WANG L, XU L, et al. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015, 7: 720-726. [114] ZOU L, CHENG J, JIANG Y, et al. Spinel MnCo2O4 nanospheres as an effective cathode electrocatalyst for rechargeable lithium-oxygen batteries[J]. RSC Advances, 2016, 6: 31248-31255. [115] HAN X, CHENG F, CHEN C, et al. A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li-O2 batteries[J]. Inorganic Chemistry Frontiers, 2016, 3: 866-871. [116] JUNG K N, HWANG S M, PARK M S, et al. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries[J]. Scientific Reports, 2015, 5: 7665-7674. [117] PRABU M, KETPANG K, SHANMUGAM S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries[J]. Nanoscale, 2014, 6: 3173-3181. [118] SHEN Q, YANG J, CHEN K L, et al. Co3O4 nanorods-graphene composites as catalysts for rechargeable zinc-air battery[J]. Journal of Solid State Electrochemistry, 2016, 20: 3331-3336. [119] YU M, WANG Z, HOU C, et al. Nitrogen-Doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma.201602868. [120] PRABU M, RAMAKRISHNAN P, SHANMUGAM S. CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc-air battery[J]. Electrochemistry Communications, 2014, 41: 59-63. [121] LEE D U, SCOTT J, PARK H W, et al. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications[J]. Electrochemistry Communications, 2014, 43: 109-112. [122] HU X, ZHU Z, CHENG F, et al. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015, 7: 11833-11840. [123] LEE J S, LEE T, SONG H K, et al. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries[J]. Energy & Environmental Science, 2011, 4: 4148. [124] ZENG M,LIU Y,ZHAO F, et al. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries[J]. Advanced Functional Materials, 2016, 26: 4397-4404. [125] PARK J, PARK M, NAM G, et al. All-solid-state cable-type flexible zinc-air battery[J]. Advanced Materials, 2015, 27: 1396-1401. [126] 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(I)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1): 55-62. PENG J Y, ZU C X, LI H. Fundamental scientific aspects of lithium batteries (I)—Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1): 55-62. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 陈健鑫, 盛楠, 朱春宇, 饶中浩. 生物质碳负载镍基纳米颗粒及其电解水析氢性能[J]. 储能科学与技术, 2022, 11(5): 1350-1357. |
[3] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
[4] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[5] | 邓晓华, 江柱, 陈超, 党岱. 沸石咪唑基金属有机框架及其衍生材料用作锌-空气电池高效阴极催化剂的最新进展[J]. 储能科学与技术, 2022, 11(3): 964-981. |
[6] | 贾林辉, 盖泽嘉, 李沫汐, 梁华根. MOFs及其衍生物在锂-氧气电池正极中的研究进展[J]. 储能科学与技术, 2022, 11(2): 503-510. |
[7] | 宋乃建, 郭明媛, 南皓雄, 喻嘉. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917. |
[8] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[9] | 何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976. |
[10] | 张申智, 王立开, 孙迎港, 吕恒, 杨子寅, 李磊磊, 李忠芳. 二维碳载Au4Pd2催化剂的构建及其电催化性能[J]. 储能科学与技术, 2021, 10(6): 2028-2038. |
[11] | 邹文午, 蒋国星, 杜丽. 共价有机框架材料(COFs)在氧电极电催化中的研究进展[J]. 储能科学与技术, 2021, 10(6): 1891-1905. |
[12] | 张诗诗, 秦棪阳, 苏亚琼. 析氢反应中氮掺杂石墨烯负载金属单/双原子催化活性起源[J]. 储能科学与技术, 2021, 10(6): 2008-2012. |
[13] | 朱子岳, 符冬菊, 陈建军, 曾燮榕. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
[14] | 熊小琳, 岳金明, 周安行, 索鎏敏, 胡勇胜, 李泓, 黄学杰. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能[J]. 储能科学与技术, 2020, 9(2): 375-384. |
[15] | 张利强, 唐永福, 刘秋男, 孙海明, 杨婷婷, 黄建宇. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||