[1] FENG XU NING, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Ener. Stor. Mater., 2018, 10(1):425-437.
[2] WATANABE S, et al. Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test[J]. J. Power Sources, 2014, 247(1):412-422.
[3] ZHENG SHI JIAN, et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle[J]. J. Electrochem. Soc., 2011, 158(4):A357-A362.
[4] NOH H J, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8, and 0.85) cathode material for lithium-ion battery[J]. J. Power Sources, 2013, 233:121-130.
[5] KONDO H, et al. Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance[J]. J. Power Sources, 2007, 174(1):1131-1136.
[6] SANG-HYUK L, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. J. Power Sources, 2013, 234(1):201-207.
[7] XIA J, SINHA N N, CHEN L P, DAHN J R. A comparative study of a family of sulfate electrolyte additives[J]. J. Electrochem. Soc., 2014, 161(3):A264-A274.
[8] WANG R, LI X, ZHANG B, et al. Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode[J]. J. Alloys Comp., 2015, 648(1):512-520.
[9] CHOI N S, YEW K H, LEE K Y, et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. J. Power Sources, 2006, 161(2):1254-1259.
[10] ETACHERI V, HAIK O, GOFFER Y, et al. Effect of fluoroethylene carbonate(FEC) on the performance and surface chemistry of Si-nanowire li-Ion battery anodes[J]. Langmuir, 2012, 28(1):965-976.
[11] KIM J S, BYUN D, LEE J K. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive[J]. Curr. Appl. Phys., 2014, 14(4):596-602.
[12] USABC "Development of low cost separators for lithium-ion batteries", RFPI 2001.
[13] VENUGOPAL G, MOORE J, HOWARD J, PENDALWAR S. Characterization of microporous separators for lithium-ion batteries[J]. J. Power Source, 1999, 77(1):31-34.
[14] KIM J K, et al. Preparation and electrochemical characterization of electrospun, microporous membrane based composite polymer electrolytes for lithium batteries[J]. J. Power Sources, 2008, 178(2):815-820.
[15] CHO T H, et al. Battery performances and thermal stability of polyacrylonitrile nanofiber based nonwoven separators for Li-ion battery[J]. J. Power Sources, 2008, 181(1):155-160.
[16] DAIGO TAKEMURA S A, et al. A powder particle size effect on ceramic powder based separator for lithium rechargeable battery[J]. J. Power Sources, 2005, 146(1):779-783. |