[1] WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10(10):725-763.
[2] GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science, 2010, 3(2):174-189.
[3] WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9):4682-4695.
[4] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
[5] ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies:Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1):16-20.
[6] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100.
[7] YAMAKI J I, BABA Y, KATAYAMA N, et al. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode[J]. Journal of Power Sources, 2003, 119-121:789-793.
[8] GNANARAJ J S, ZINIGRAD E, ASRAF L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119-121:794-798.
[9] KAWAMURA T, KIMURA A, EGASHIRA M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2):260-264.
[10] MARKEVICH E, SALITRA G, AURBACH D. Influence of the PVDF binder on the stability of LiCoO2 electrodes[J]. Electrochemistry Communications, 2005, 7(12):1298-1304.
[11] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27):9938-9954.
[12] VENUGOPAL G, MOORE J, HOWARD J, et al. Characterization of microporous separators for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(1):34-41.
[13] SWART J, ARORA A, MEGERLE M, et al. Methods for measuring the mechanical safety vent pressure of lithium ion battery cells. Product Safety Engineering Society Symposium[C]//IEEE, 2006:1-4.
[14] TOBISHIMA S I, YAMAKI J I. A consideration of lithium cell safety[J]. Journal of Power Sources, 1999, 81/82:882-886.
[15] BELOV D, YANG M H. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid State Electrochemistry, 2008, 12(7):885-894.
[16] BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2):401-414.
[17] LEISING R A, PALAZZO M J, TAKEUCHI E S, et al. A study of the overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2001, 97/98:681-683.
[18] FAUST M A, SUCHANSKI M R, OSTERHOUDT H W. Battery separator assembly:US 4741979[P]. 1998-05-03.
[19] ULLRICH M, BECHTOLD D, RABENSTEIN H, et al. Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism:US 6511517 B1[P]. 2003-01-28.
[20] BAGINSKA M, BLAISZIK B J, MERRIMAN R J, et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres[J]. Advanced Energy Materials, 2012, 2(5):583-590.
[21] BAGINSKA M, BLAISZIK B J, ODOM S A, et al. Thermoresponsive microcapsules for autonomic lithium-ion battery shutdown[M]. Berlin:Springer, 2011:17-23.
[22] BAGINSKA M, BLAISZIK B J, RAJH T, et al. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres[J]. Journal of Power Sources, 2014, 269:735-739.
[23] JI W, JIANG B, AI F, et al. Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015, 5(1):172-176.
[24] JIANG X, XIAO L, AI X, et al. A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(44):23238-23242.
[25] XIA L, WANG D, YANG H, et al. An electrolyte additive for thermal shutdown protection of Li-ion batteries[J]. Electrochemistry Communications,2012, 25:98-100.
[26] DAN P, MENGERITSKI E, GERONOV Y, et al. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell[J]. Journal of Power Sources, 1995, 54(1):143-145.
[27] MENGERITSKY E, DAN P, WEISSMAN I, et al. Safety and performance of tadiran TLR-7103 rechargeable batteries[J]. Journal of the Electrochemical Society, 1996, 143(7):2110-2116.
[28] WANG F M, LO S C, CHENG C S, et al. Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery[J]. Journal of Membrane Science, 2011, 368(1):165-170.
[29] LI Y H, LEE M L, WANG F M, et al. Electrochemical performance and safety features of high-safety lithium ion battery using novel branched additive for internal short protection[J]. Applied Surface Science, 2012, 261:306-311.
[30] LIU H M, SAIKIA D, WU H C, et al. Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries[J]. RSC Advances, 2014, 4(99):56147-56155.
[31] LIN C C, WU H C, PAN J P, et al. Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode[J]. Electrochimica Acta, 2013, 101:11-17.
[32] CHANG L S, WU H C, LIN Y C, et al. XPS study on the STOBA coverage on Li(Ni0.4Co0.2Mn0.4)O2 oxide in pristine electrodes[J]. Surface and Interface Analysis, 2017, 49(10):1017-1022.
[33] YANG H, LIU Z, CHANDRAN B K, et al. Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition[J]. Advanced Materials, 2015, 27(37):5593-5598.
[34] SHI Y, HA H, AL-SUDANI A, et al. Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices[J]. Advanced Materials, 2016, 28(36):7921-7928.
[35] FENG X M, AI X P, YANG H X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries[J]. Electrochemistry Communications, 2004, 6(10):1021-1024.
[36] XIA L, ZHU L, ZHANG H, et al. A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries[J]. Chinese Science Bulletin, 2012, 57(32):4205-4209.
[37] ZHONG H, KONG C, ZHAN H, et al. Safe positive temperature coefficient composite cathode for lithium ion battery[J]. Journal of Power Sources, 2012, 216:273-280.
[38] CHEN Z, HSU P C, LOPEZ J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries[J]. Nature Energy, 2016, 1:15009.
[39] JI W, WANG F, LIU D, et al. Building thermally stable Li-ion batteries using a temperature-responsive cathode[J]. Journal of Materials Chemistry A, 2016, 4(29):11239-11246.
[40] XIA L, Li S L, AI X P, et al. Temperature-sensitive cathode materials for safer lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8):2845-2848.
[41] KISE M, YOSHIOKA S, KURIKI H. Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries[J]. Journal of Power Sources, 2007, 174(2):861-866. |