储能科学与技术 ›› 2018, Vol. 7 ›› Issue (3): 471-482.doi: 10.12028/j.issn.2095-4239.2018.0064
张华, 起文斌, 金周, 赵俊年, 武怿达, 詹元杰, 陈宇阳, 陈彬, 俞海龙, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2018-04-20
出版日期:
2018-05-01
发布日期:
2018-04-24
通讯作者:
黄学杰,研究员,研究方向为锂子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn
作者简介:
张华(1993-),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:zhanghua15@mails.ucas.ac.cn
ZHANG Hua, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2018-04-20
Online:
2018-05-01
Published:
2018-04-24
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2018年2月1日至2018年3月31日上线的锂电池研究论文,共有2731篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料和有机物正极材料,材料结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响以及富锂材料的氧参与氧化还原反应的机制受到重视。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,金属锂负极的研究侧重于通过表面覆盖层的设计来提高其循环性能。电解液添加剂、新型固态电解质、固态电池、锂硫电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇关于电池界面及材料分析方法的研究论文。
中图分类号:
张华, 起文斌, 金周, 赵俊年, 武怿达, 詹元杰, 陈宇阳, 陈彬, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.2.1-2018.3.31)[J]. 储能科学与技术, 2018, 7(3): 471-482.
ZHANG Hua, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2018 to Mar. 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(3): 471-482.
[1] DUAN J, DONG P, WANG D, et al. A facile structure design of LiNi0.90Co0.07Al0.03O2as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution[J]. Journal of Alloys and Compounds, 2018, 739:335-344. [2] GENT WE, LIM K, LIANG Y, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02041-x. [3] BI Z, WU J, YANG S, et al. In situ probing behaviors of single LiNiO2 nanoparticles by merging CAFM and AM-FM techniques[J]. Nanoscale, 2018, 10(6):2916-2922. [4] LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:doi:10.1002/adma. 201705197. [5] NOWAK S M. The role of cations on the performance of lithium ion batteries:A quantitative analytical approach[J]. Accounts of Chemical Research, 2018, 51(2):265-272. [6] ARMSTRONG A R, PATERSON A J, DUPRE N, et al. Structural evolution of layered LixMnyO2:Combined neutron, NMR, and electrochemical study[J]. Chemistry of Materials, 2007, 19(5):1016-1023. [7] PEI Y, CHEN Q, XIAO Y C, et al. Understanding the phase transitions in spinel-layered-rock salt system:Criterion for the rational design of LLO/spinel nanocomposites[J]. Nano Energy, 2017, 40:566-575. [8] ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:doi:10.1002/adma.201707255. [9] DUDA L K. Oxygen redox reactions in Li ion battery electrodes studied by resonant inelastic X-ray scattering[J]. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221:79-87. [10] ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02291-9. [11] WANG J, WU H, CUI Y, et al. A new class of ternary compound for lithium-ion battery:From composite to solid solution[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5125-5132. [12] SHI J L, XIAO D D, GE M, et al. High-capacity cathode material with high voltage for Li-ion batteries[J]. Advanced Materials, 2018, 30(9):doi:https://doi.org/10.1002/adma.201705575. [13] ITOH T H. Electrochemical cycling effect on structural parameters and electron density of Li1-xNi0.5Mn1.5O4 using synchrotron X-ray analyses[J]. Physica B-Condensed Matter, 2018, 532:64-70. [14] KUENZEL M, BRESSER D, DIEMANT T, et al. Complementary strategies toward the aqueous processing of high-voltage LiNi0.5Mn1.5O4 lithium-ion cathodes[J]. ChemSusChem, 2018, 11(3):562-573. [15] LIU Y, LIU J, WANG J, et al. Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating[J]. Nature Communications, 2018, 9:929. [16] AMIN K, MENG Q, AHMAD A, et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries[J]. Advanced Materials, 2018, 30(4):1703868. [17] CABANA J, KWON B L. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2):299-308. [18] PETRONICO A, BASSETT K L, NICOLAU B G, et al. Toward a four-electron redox quinone polymer for high capacity lithium ion storage[J]. Advanced Energy Materials, 2018, 8(5):doi:https://doi.org/10.1002/aenm.201700960. [19] HERNANDEZ G, SALSAMENDI M, MOROZOVA S M, et al. Polyimides as cathodic materials in lithium batteries:Effect of the chemical structure of the diamine monomer[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2018, 56(7):714-723. [20] OGATA K, JEON S, KO D S, et al. Evolving affinity between coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries[J]. Nature Communications. 2018, 9:479. [21] OLSON J Z, JOHANSSON P K, CASTNER D G, et al. Operando sum-frequency generation detection of electrolyte redox products at active Si nanoparticle Li-ion battery interfaces[J]. Chemistry of Materials, 2018, 30(4):1239-1248. [22] AN G H, KIM H H J. Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage[J]. ACS Applied Materials&Interfaces, 2018, 10(7):6235-6244. [23] CHEN M, LI B, LIU X, et al. Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability[J]. Journal of Materials Chemistry A, 2018, 6(7):3022-3027. [24] HOROWITZ Y, HAN H L, SOTO F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes:Electrolyte interface structure probed by sum frequency vibrational spectroscopy and Ab initio molecular dynamics[J]. Nano Letters, 2018, 18(2):1145-1151. [25] ELIA G J. A SiOx-based anode in a high-voltage lithium-ion battery[J]. ChemElectroChem, 2017, 4(9):2164-2168. [26] HERNANDEZ C R, ETIEMBLE A, DOUILLARD T, et al. A facile and very effective method to enhance the mechanical strength and the cyclability of Si-based electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(6):doi:http://doi.org/10.1002/aenm. 201701787. [27] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s467-018-02888-8. [28] LI H H, FAN H H, FAN C Y, et al. Construction of electrical "highway" to significantly enhance the redox kinetics of normal hierarchical structured materials of MnO[J]. Journal of Materials Chemistry A, 2018, 6(4):1663-1670. [29] KIM J Y, KIM A Y, LIU G, et al. Li4SiO4-based artificial passivation thin film for improving interfacial stability of Li metal anodes[J]. ACS Applied Materials&Interfaces, 2018, doi:10.1021/acsami. 7b18997. [30] JIN C, SHENG O, LU Y, et al. Metal oxide nano particles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA·cm-2[J]. Nano Energy, 2018, 45:203-209. [31] WANG D, ZHANG W, DREWETT N E, et al. Exploiting anti-T-shaped graphene architecture to form low tortuosity, sieve-like interfaces for high-performance anodes for Li-based cells[J]. ACS Central Science, 2018, 4(1):81-88. [32] CORTES F J Q, BOEBINGER M G, XU M, et al. Operando synchrotron measurement of strain evolution in individual alloying anode particles within lithium batteries[J]. ACS Energy Letters, 2018, 3(2):349-355. [33] PARK M G, LEE D H, JUNG H, et al. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility[J]. ACS Nano, 2018, doi:10.1021/acsnan0.8b00586. [34] HU R, ZHANG H, LU Z, et al. Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals[J]. Nano Energy, 2018, 45:255-265. [35] HAN J, KONG D, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-017-02808-2. [36] ZHANG Z, CHEN S, YANG J, et al. Interface Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials& Interfaces, 2018, 10(3):2556-2565. [37] JIN S, SUN Z, GUO Y, et al. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Advanced Materials, 2017, 29(38):doi:https://doi.org/10.1002/adma.201700783. [38] KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3):607-613. [39] YAN J, YU JDING B. Mixed ionic and electronic conductor for Li-metal anode protection[J]. Advanced Materials, 2018, 30(7):doi:https://doi.org/10.1002/adma.201705105. [40] XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13):6310-6317. [41] DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1):82-85. [42] JOOS B, VRANKEN T, MARCHAL W, et al. Eutectogels:A new class of solid composite electrolytes for Li/Li-ion batteries[J]. Chemistry of Materials, 2018, 30(3):655-662. [43] NOJABAEE M, CHENG H W, VALTINER M, et al. interfacial layering and screening behavior of glyme-based lithium electrolytes[J]. Journal of Physical Chemistry Letters, 2018, 9(3):577-582. [44] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Advanced Energy Materials, 2018, 8(3):doi:https://doi.org/10.1002/aenm.201700971. [45] CHEN C, LI Q, LI Y, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(2):2185-2190. [46] STANJE B, RETTENWANDER D, BREUER S, et al. Solid electrolytes:Extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals[J]. Annalen Der Physik, 2017, 529(12):doi:https://doi.org/10.1002/andp.20170140. [47] WANG B, ZHAO Y, BANIS M N, et al. Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(2):1654-1661. [48] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angewandte Chemie-International Edition, 2018, 57(8):2096-2100. [49] KIM S, TOYAMA N, OGUCHI H, et al. Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes[J]. Chemistry of Materials, 2018, 30(2):386-391. [50] TRON A, NOSENKO A, PARK Y D, et al. Enhanced ionic conductivity of the solid electrolyte for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2018, 258:467-470. [51] CHOI H, KIM H W, KIM J K, et al. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries[J]. Nano Research, 2017, 10(9):3092-3102. [52] KIM S H, CHOI K H, CHO S J, et al. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing[J]. Energy&Environmental Science, 2018, 11(2):321-330. [53] WU B, LOCHALA J, TAVERNE T, et al. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth[J]. Nano Energy, 2017, 40:34-41. [54] WANG F, SUO L, LIANG Y, et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8):doi:https://doi.org/10.1002/aenm.201600922. [55] ADAMS B D, CARINO E V, CONNELL JG, et al. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes[J]. Nano Energy, 2017, 40:607-617. [56] SUO L, OH D, LIN Y, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51):18670-18680. [57] LI Y, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40:9-19. [58] SUO L, XUE W, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):1156-1161. [59] GOUVERNEUR M, SCHMIDT FSCHONHOFF M. Negative effective Li transference numbers in Li salt/ionic liquid mixtures:Does Li drift in the "Wrong" direction?[J]. Physical Chemistry Chemical Physics:PCCP, 2018, 20(11):7470-7478. [60] ZHANG T, YANG J, ZHU J, et al. A lithium-ion oxygen battery with a Si anode lithiated in situ by a Li3N-containing cathode[J]. Chemical Communications, 2018, 54(9):1069-1072. [61] DUTTA A, WONG R A, PARK W, et al. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-017-02727-2. [62] QIN L, ZHAI D, LV W, et al. A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover[J]. Nano Energy, 2017, 40:258-263. [63] WU S, QIAO Y, YANG S, et al. Clean electrocatalysis in a Li2O2 redox-based Li-O2 battery built with a hydrate-melt electrolyte[J]. ACS Catalysis, 2018, 8(2):1082-1089. [64] YU W, WANG H, HU J, et al. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity[J]. ACS Applied Materials&Interfaces, 2018, 10(9):7989-7995. [65] LACEY S D, KIRSCH D J, L I Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, doi:https://doi.org/10.1002/adma.201705651. [66] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7):doi:https://doi.org/10.1002/aenm.201702097. [67] CHEN Y, GAO X, JOHNSON L R, et al. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell[J]. Nature Communications, 2018, 9:doi:10.1038/zs41467-018-03204-0. [68] LIU M, REN Y X, JIANG H R, et al. An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive[J]. Nano Energy, 2017, 40:240-247. [69] CHEN Y, ZHANG H, XU W, et al. Polysulfide stabilization:A pivotal strategy to achieve high energy density Li-S batteries with long cycle life[J]. Advanced Functional Materials, 2018, 28(8):doi:https://doi.org/10.1002/adfm.201704987. [70] BENITEZ A, DI LECCE D, ELIA G A, et al. A new lithium-ion battery using 3D-array nanostructured graphene-sulfur cathode and silicon oxide-based anode[J]. ChemSusChem, 2018, doi:https://doi.org/10.1002/cssc.201800242. [71] CARBONE L, CONEGLIAN T, GOBET M, et al. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery[J]. Journal of Power Sources, 2018, 377:26-35. [72] LI L, PASCAL T A, CONNELL J G, et al. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes[J]. Nature Communications, 2017, 8:doi:10.1038/s41467-017-02410-6. [73] HUANG F, MA G, WEN Z, et al. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure[J]. Journal of Materials Chemistry A, 2018, 6(4):1612-1620. [74] LI G, HUANG Q, HE X, et al. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries[J]. ACS Nano, 2018, doi:10.1021/acsnano.7b08035. [75] WU F, CHEN S, SROT V, et al. A sulfur-limonene-based electrode for lithium-sulfur batteries:High-performance by self-protection[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, doi:https://doi. org/10.1002/adma.201706643. [76] CHUNG S H, MANTHIRAM A. Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio[J]. Advanced Materials, 2018, 30(6):doi:https://doi.org/10.1002/adma.201705951. [77] LI J, LIANG X, LIOU F, et al. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-20329-w. [78] JUNG W K, BAEK C, KIM J H, et al. A highly-aligned lamellar structure of ice-templated LiFePO4 cathode for enhanced rate capability[J]. Materials&Design, 2018, 139:89-95. [79] STROE D I, SWIERCZYNSKI M, KAER S K, et al. Degradation behavior of lithium-ion batteries during calendar ageing-the case of the internal resistance increase[J]. IEEE Transactions on Industry Applications, 2018, 54(1):517-525. [80] INOISHI A, NISHIO A, YOSHIOKA Y, et al. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation[J]. Chemical communications (Cambridge, England). 2018:doi:10.1039/c8cc00734A. [81] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-19398-8. [82] WEI T S, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1703027-e1703027. [83] YU Y S, FARMAND M, KIM C, et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-03401-x. [84] JO C, HWANG J, LIM W G, et al. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides[J]. Advanced Materials, 2018, 30(6):doi:https://doi.org/10.1002/adma.201703829. [85] TAKAMATSU D, YONEYAMA A, ASARI Y, et al. Quantitative Visualization of salt concentration distributions in lithium-ion battery electrolytes during battery operation using X-ray phase imaging[J]. Journal of the American Chemical Society, 2018, 140(5):1608-1611. [86] ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces, 2018, 5(5):doi:https://doi.org/10.1002/admi.201701147. [87] HAUSBRAND R, CHERKASHININ G, FINGERLE M, et al. Surface and bulk properties of Li-ion electrodes-A surface science approach[J]. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221:65-78. [88] SHANG T, WEN Y, XIAO D, et al. Atomic-scale monitoring of electrode materials in lithium-ion batteries using in situ transmission electron microscopy[J]. Advanced Energy Materials, 2017, 7(23):doi:https://doi.org/10.1002/aenm.201700709 [89] ZHU C, USISKIN R E, YU Y, et al. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369):doi:10.1126/science.aa02808. [90] CHU Z, FENG X, LU L, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017, 204:1240-1250. [91] GUHA APATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):135-146. [92] HESSE H C, SCHIMPE M, KUCEVIC D, et al. lithium-ion battery Storage for the grid-A review of stationary battery storage system design tailored for applications in modern power grids[J]. Energies, 2017, 10(12):doi:10.3390/en/0122107. [93] NOELLE D J, WANG M, LE A V, et al. Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied Energy, 2018, 212:796-808. [94] HU E, WANG X, YU X, et al. Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge-discharge cycling and heating[J]. Accounts of Chemical Research, 2018, 51(2):290-298. [95] DINKELACKER F, MARZAK P, YUN J, et al. A multistage mechanism of lithium intercalation into graphite anodes in presence of the solid electrolyte interface[J]. ACS Applied Materials& Interfaces, 2018:doi:10.1021/acsam.7b18738 [96] HUANG BFRAPPER G. Pressure-induced polymerization of CO2 in lithium-carbon dioxide phases[J]. Journal of the American Chemical Society, 2018, 140(1):413-422. [97] TAKENAKA N, FUJIE T, BOUIBES A, et al. Microscopic formation mechanism of solid electrolyte interphase film in lithium-ion batteries with, highly concentrated electrolyte[J]. Journal of Physical Chemistry C, 2018, 122(5):2564-2571. [98] DAWSON J A, CANEPA P, FAMPRIKIS T, et al. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(1):362-368. [99] SINGLE F, LATZ A B. Identifying the mechanism of continued SEI growth[J]. ChemSusChem, 2018:doi:https://doi.org/10.1002/cssc.201800077. [100] WHITTINGHAM M S, SIU CDING J. Can multielectron intercalation reactions be the basis of next generation batteries?[J]. Accounts of Chemical Research, 2018, 51(2):258-264. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||