[1] 赵振宇, 范磊磊. 可再生能源法规、政策分析及其对发电结构的影响[J]. 可再生能源, 2010, 28(4):5-9. ZHAO Zhenyu, FAN Leilei. Renewable energy regulation, policy analysis and its impact on power generation structure[J]. Renewable Energy, 2010, 28(4):5-9.
[2] 樊柳言, 曲德林, 汪海波, 等. 福岛核危机后日本新能源格局的转变及其影响与启示[J]. 中外能源, 2011, 16(8):29-34. FAN Liuyan, QU Delin, WANG Haibo, et al. The transformation of Japan's new energy pattern after the fukushima nuclear crisis and its implications and implications[J]. China and Foreign Energy, 2011, 16(8):29-34.
[3] 关晓慧, 吕跃刚. 间歇性可再生能源发电中的储能技术研究[J]. 能源与节能, 2011(2):56-60. GUAN Xiaohui, LU Yuogang. Research on energy storage technology in intermittent renewable energy generation[J]. Energy and Energy Conservation, 2011(2):56-60.
[4] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2):146-151. CHEN Haisheng, LIU Jinchao, GUO Huan, et al. Principle of compressed air energy storage technology[J]. Energy Storage Science and Technology, 2013, 2(2):146-151.
[5] RIBEIRO P F, JOHNSON B K, CROW M L, et al. Energy storage systems for advanced power applications[J]. Proceedings of the IEEE, 2001, 89(12):1744-1756.
[6] ISLAM M R, MEKHILEF S, SAIDUR R. Progress and recent trends of wind energy technology[J]. Renewable & Sustainable Energy Reviews, 2013, 21(5):456-468.
[7] LUND H, SALGI G. The role of compressed air energy storage (CAES) in future sustainable energy systems[J]. Energy Conversion & Management, 2009, 50(5):1172-1179.
[8] 张文亮, 丘明, 来小康. 储能技术在电力系统中的应用[J]. 电网技术, 2008, 32(7):1-9. ZHANG Wenliang, QIU Ming, LAI Xiaokang. The application of energy storage technology in power system[J]. Power grid Technology, 2008, 32(7):1-9.
[9] 李雪梅. 先进绝热压缩空气储能系统部件特性对系统性能影响的研究[D]. 北京:中国科学院, 2015. LI Xuemei. Research on the effects of advanced adiabatic air energy storage system components on system performance[D]. Beijing:China Academy of Sciences Graduate School (Engineering Institute of Thermal Physics), 2015.
[10] 刘金超, 徐玉杰, 陈宗衍, 等. 压缩空气储能储气装置发展现状与储能特性分析[J]. 科学技术与工程, 2014, 14(35):148-156. LIU Jinchao, XU Yujie, CHEN Zongyan, etc. The development status and energy storage characteristics of compressed air storage devices[J]. Science and Technology and Engineering, 2014, 14(35):148-156.
[11] KORPAAS M, HOLEN A T, HILDRUM R. Operation and sizing of energy storage for wind power plants in a market system[J]. International Journal of Electrical Power & Energy Systems, 2003, 25(8):599-606.
[12] HUBERT S, MATTERA F, MALBRANCHE P. Investire network-investigation of storage technologies for intermittent renewable energies in Europe[J]. Journal of Power Sources, 2003, 116(1):287.e40-287.e43.
[13] HADJIPASCHALIS I, POULLIKKAS A, EFTHIMIOU V. Overview of current and future energy storage technologies for electric power applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6/7):1513-1522.
[14] CHATZIVASILEIADI A, AMPATZI E, KNIGHT I. Characteristics of electrical energy storage technologies and their applications in buildings[J]. Renewable & Sustainable Energy Reviews, 2013, 25(5):814-830.
[15] 刘文毅, 杨勇平. 用于分布能量系统的微型压缩空气蓄能(MCAES)系统性能计算与优化[J]. 工程热物理学报, 2006, 27(6):911-913. LIU Wenyi, YANG Yongping. Calculation and optimization of microcompressed air energy storage (MCAES) system for distributed energy systems[J]. Journal of Engineering Thermal Physics, 2006, 27(6):911-913.
[16] WANG S, CHEN G, FANG M, et al. A new compressed air energy storage refrigeration system[J]. Energy Conversion & Management, 2006, 47(18):3408-3416.
[17] BEUKES J, JACOBS T, DERBY J, et al. Suitability of compressed air energy storage technology for electricity utility standby power applications[C]. 2008 IEEE International Telecommunications Energy Conference, 2008:1-4.
[18] NIELSEN L, LEITHNER R. Dynamic simulation of an innovative compressed air energy storage plant-detailed modeling of the storage cavern[J]. WSEAS Transactions on Power Systems, 2009, 4(8):253-263.
[19] KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. International Journal of Heat & Mass Transfer, 2012, 55(21/22):5616-5630.
[20] 杨花. 压气蓄能过程中地下盐岩储气库稳定性研究[D]. 武汉:中国科学院武汉岩土力学研究所, 2009. YANG Hua. Stability study of underground salt reservoirs in the process of pressurized gas storage[D]. Wuhan:Graduate School of Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), 2009.
[21] 韩中合, 刘士名, 周权, 等. 恒壁温储气模型下先进绝热压缩空气储能系统性能分析[J]. 中国电机工程学报, 2016, 36(12):3373-3380. HAN Zhonghe, LIU Shiquan, ZHOU Quan, et al. Analysis of the performance of advanced adiabatic compressive air energy storage system under the constant wall temperature gas storage model[J]. Journal of China Electrical Engineering, 2016, 36(12):3373-3380.
[22] ULLMANN A, KUSHNIR R, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J]. Journal of Energy Resources Technology, 2012, 134(2):1-10.
[23] KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth:A modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92(2):653-667.
[24] PROCZKA J, MURALIDHARAN K, VILLELA D, et al. Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage[J]. Energy Conversion & Management, 2013, 65:597-605.
[25] ALLEN R D, DOHERTY T J, KAMBERG L D. Summary of selected compressed air energy storage studies[R]. Richland, WA:Pacific Northwest Laboratory, 1985.
[26] NAKAYAMA A, YAMACHI H. Thermodynamic analysis of efficiency and safety of underground air energy storage system[J]. Report of Research Center for Urban Safety & Security Kobe University, 1999, 3:247-254.
[27] GRAZZINI G, MILAZZO A. Thermodynamic analysis of CAES/TES systems for renewable energy plants[J]. Renewable Energy, 2008, 33(9):1998-2006.
[28] 刘澧源, 蒋中明, 王江营, 等. 压气储能电站地下储气库之压缩空气热力学过程分析[J]. 储能科学与技术, 2018, 7(2):232-239. LIU Liyuan, JIANG Zhongming, WANG Jiangying, et al. Analysis of the thermodynamics process of compressed air in the underground gas storage reservoir of pressurized gas storage plants[J]. Energy Storage Science and Technology, 2018, 7(2):232-239. |