[1] WU CHUAN B Y, WU FENG, et al. Novel ternary metal boride Mg-Co-B alloys as anode materials for alkaline secondary batteries[J]. Electrochemistry Communications, 2009, 11(11):2173-2176.
[2] 罗锐, 黄永鑫, 陈人杰, 吴锋. 基于多电子反应机制的高比能二次电池[C]//第三届全国储能科学与技术大会, 2016. LUO Rui, HUANG Yongxin, CHEN Renjie, WU Feng. Secondary battery with high specific energy based on multi-electron reaction mechanism[C]//Proceedings of the Third National Conference on Energy, 2016.
[3] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5):607-614. LI Hong, XU Xiaoxiong. R&D vision and strategies on lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):607-614.
[4] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805):724-727.
[5] RANKIN W J. Minerals, metals and sustainability:Meeting future material needs[M]//PRESS C. Boca Raton, Fla. 2011.
[6] B SAHOO N C, A SAMANTARAY, P KUMAR. Inorganic chemistry[M]. PHI Learning, 2012.
[7] HARRIS J. Nature's building blocks:an A-Z guide to the elements[J]. Interdisciplinary Science Reviews, 2002, 27(1):79-80.
[8] 郑育培, 努丽燕娜, 杨军, 陈强, 王久林. 可充镁电池正极材料研究进展[J]. 化工进展, 2011, 30(5):1024-1032. ZHENG Yupei, NULI Yanna, YANG Jun, et al. Research progress of cathode materials for rechargeable magnesium batteries[J]. Chemical Industry and Engineering Progress, 2011, 30(5):1024-1032.
[9] 马正青, 左列, 庞旭, 曾苏民. 铝电池研究进展[J]. 船电技术, 2008, 28(5):257-261. MA Zhengqing, ZUO Lie, PANG Xu, et al. Advance in Aluminum Batteries[J]. Ship Electricity Technology, 2008, 28(5):257-261.
[10] NOVAK P, DESILVESTRO J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes[J]. J. Electrochem. Soc., 1993, 140(1):140-144.
[11] BRUCE P G, KROK F, NOWINSKI J, et al. Chemical intercalation of magnesium into solid hosts[J]. J. Mater. Chem., 1991, 1(4):705-706.
[12] KUMAGAI N, KOMABA S, SAKAI H, et al. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode[J]. Journal of Power Sources, 2001, 97/98:515-517.
[13] GREGORY T D, HOFFMAN R J, WINTERTON R C. Nonaqueous electrochemistry of magnesium-applications to energy-storage[J]. J. Electrochem. Soc., 1990, 137(3):775-780.
[14] LI X L, LI Y D. MoS2 nanostructures:Synthesis and electrochemical Mg2+ intercalation[J]. J. Phys. Chem. B, 2004, 108(37):13893-13900.
[15] MAKINO K, KATAYAMA Y, MIURA T, et al. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3[J]. Journal of Power Sources, 2001, 99(1-2):66-69.
[16] FENG Z, YANG J, NULI Y, et al. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior[J]. Journal of Power Sources, 2008, 184(2):604-609.
[17] WANG R Y, WESSELLS C D, HUGGINS R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries[J]. Nano Letters, 2013, 13(11):5748-5752.
[18] NULI Y, GUO Z, LIU H, et al. A new class of cathode materials for rechargeable magnesium batteries:Organosulfur compounds based on sulfur-sulfur bonds[J]. Electrochemistry Communications, 2007, 9(8):1913-1917.
[19] GIRAUDET J, CLAVES D, GUERIN K, et al. Magnesium batteries:Towards a first use of graphite fluorides[J]. Journal of Power Sources, 2007, 173(1):592-598.
[20] REED L D, MENKE E. The roles of V2O5 and stainless steel in rechargeable Al-ion batteries[J]. J. Electrochem. Soc., 2013, 160(6):A915-A917.
[21] KULISH V V, MANZHOS, S. Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides[J]. RSC Adv., 2017, 7(30):18643-18649.
[22] LIU S, HU J J, YAN N F, et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries[J]. Energy & Environmental Science, 2012, 5(12):9743-9746.
[23] JURAN T R, SMEU M. Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo6S8 cathode[J]. Phys. Chem. Chem. Phys., 2017, 19(31):20684-20690.
[24] MORI T, ORIKASA Y, NAKANISHI K, et al. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55 degrees C[J]. Journal of Power Sources, 2016, 313:9-14.
[25] PHILLIPS J, GIBBARD H F. Thermodynamics of Li(Al)-FeS battery system[J]. J. Electrochem. Soc., 1978, 125(8):C369.
[26] LIU S, PAN G L, LI G R, et al. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries[J]. J. Mater. Chem. A, 2015, 3(3):959-962.
[27] XU J T, DOU Y H, WEI Z X, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Adv. Sci., 2017, 4(10):14.
[28] RANI J V, KANAKAIAH V, DADMAL T, et al. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery[J]. J. Electrochem. Soc., 2013, 160(10):A1781-A1784.
[29] HUDAK N S. Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries[J]. J. Phys. Chem. C, 2014, 118(10):5203-5215.
[30] DONAHUE F M, MANCINI S E, SIMONSEN L. Secondary aluminum iron(Ⅲ) chloride batteries with a low-temperature molten-salt electrolyte[J]. J. Appl. Electrochem., 1992, 22(3):230-234.
[31] SUTO K, NAKATA A, MURAYAMA H, et al. Electrochemical properties of al/vanadium chloride batteries with AlCl3-1-ethyl-3-methylimidazolium chloride electrolyte[J]. J. Electrochem. Soc., 2016, 163(5):A742-A747.
[32] BRABSON G D, FANNIN A A, KING L A, et al. Prototype high-power density aluminum-chlorine battery[J]. J. Electrochem. Soc., 1973, 120(3):C85.
[33] GAO T, LI X G, WANG X W, et al. A rechargeable Al/S battery with an ionic-liquid electrolyte[J]. Angewandte Chemie-International Edition, 2016, 55(34):9898-9901.
[34] ZU Chenxi, LI H. Thermodynamics analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8):2614-2624.
[35] HAYNES W M. CRC handbook of chemistry and physics,97th edition[M]. Boca Raton:CRC Press, 2016-2017.
[36] JAMES G SPEIGHT. Lange's handbook of chemistry,16th edition[M]. New York:McGraw Hill, 2005.
[37] BARIN I. Thermochemical date of pure substances, 3rd edition[M]. New York:VCH publisher, 1995.
[38] National Institute of Standards and Technology (NIST)-JANAF Thermochemical Tables[DB/OL]. https://janaf.nist.gov/
[39] SMITH J G, NARUSE J, HIRAMATSU H, et al. Theoretical limiting potentials in Mg/O2 batteries[J]. Chemistry of Materials, 2016, 28(5):1390-1401.
[40] IMAMURA D, MIYAYAMA M. Characterization of magnesium-intercalated V2O5/carbon composites[J]. Solid State Ionics, 2003, 161(1-2):173-180.
[41] 司玉昌, 孙文军, 王贺孔, 邓昌辉, 牟心红, 焦丽芳, 袁华堂. MoO3纳米材料的合成及电化学嵌镁性能研究[J]. 南开大学学报(自然科学版), 2010, 43(6):5-8. SI Yuchang, SUN Wenjun, WANG Hekong, et al. Synthesis and Electrochemical insertion of magnesium in MoO3 nanomaterials[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis(Natural Science Edition), 2010, 43(6):5-8.
[42] ARTHUR T S, ZHANG R G, LING C, et al. Understanding the electrochemical mechanism of K-alpha MnO2 for magnesium battery cathodes[J]. ACS Appl. Mater. Interfaces, 2014, 6(10):7004-7008.
[43] WANG L, ASHEIM K, VULLUM P E, et al. Sponge-like porous manganese(Ⅱ,Ⅲ) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries[J]. Chemistry of Materials, 2016, 28(18):6459-6470.
[44] SUTTO T E, DUNCAN T T. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes[J]. Electrochim Acta, 2012, 80:413-417.
[45] LIU Y C, JIAO L F, WU Q, et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries[J]. Nanoscale, 2013, 5(20):9562-9567.
[46] JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chem. Commun., 2011, 47(47):12610-12612.
[47] DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries:Developments and challenges[J]. J. Mater. Chem. A, 2017, 5(14):6347-6367.
[48] LIU Y, SANG S, WU Q, et al. The electrochemical behavior of Cl- assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries[J]. Electrochim Acta, 2014, 143:340-346. |