[1] TZIMAS E, FILIOU C, PETEVES S, VEYRET J B. Hydrogen storage:State-of-the-art and future perspective[M]. European Commission, 2003.
[2] 屈文敏, 花争立, 李雄鹰, 等. 热脱附谱技术在储氢容器材料氢陷阱研究中的应用研究进展[J]. 化工进展, 2017(11):4160-4169. QU Wenmin, HUA Zhengli, LI Xiongying, et al. Application of TDS technology in the study of hydrogen traps in the materials of hydrogen storage vessels[J]. Chemical Industry and Engineering Progress, 2017(11):4160-4169.
[3] The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. 2015.
[4] ZHENG J, LIU X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1):1048-1057.
[5] ZÜTTEL A. Materials for hydrogen storage[J]. Materials Today, 2003, 6(9):24-33.
[6] 刘贤信. 大容积全多层高压储氢容器及氢在金属中的富集特性研究[D]. 杭州:浙江大学, 2012. LIU Xianxin. Researches on large volume layered high-pressure hydrogen vessels and hydrogen accumulation characteristics in metal[D]. Hangzhou:Zhejiang University, 2012.
[7] 丁福臣, 易玉峰. 制氢储氢技术[M]. 北京:化学工业出版社, 2006. DING F C, YI YF. Hydrogen production and storage technology[M]. Beijing, Chemical Industry Press, 2006.
[8] 徐丽, 马光, 盛鹏, 等. 储氢技术综述及在氢储能中的应用展望[J]. 智能电网, 2016, 2(2):166-171. XU Li, MA Guang, SHENG Peng, et al. Overview of hydrogen storage technologies and their application prospects in hydrogen-based energy storag[J]. Smart Grid, 2016, 2(2):166-171.
[9] WEN J X, MADHAV RAO V C, TAM V H Y. Numerical study of hydrogen explosions in a refuelling environment and in a model storage room[J]. International Journal of Hydrogen Energy, 2010, 35(1):385-394.
[10] 欧阳煜. 玻璃纤维(GFRP)片材加固混凝土框架结构的性能研究[D]. 杭州:浙江大学, 2001. OUYANG Yi. Study on the behavior of concrete structure strengthened with glass fiber reinforced plastic(GFRP)[D]. Hangzhou:Zhejiang University, 2001.
[11] 郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器[J]. 化工学报, 2004(S1):130-133. ZHENG Jinyang, KAI Fangming, LIU Zhongqiang, et al. Light weighthigh-pressure hydrogen tank[J]. Journal of Chemical Industry and Engineering, 2004(S1):130-133.
[12] 王瑛琪, 盖登宇, 宋以国. 纤维缠绕技术的现状及发展趋势[J]. 材料导报, 2011(5):110-113. WANG Yingqi, GAI Dengyu, SONG Yiguo. Present situation and development tendency of filament winding technology[J]. Materials Review, 2011(5):110-113.
[13] 陈虹港. 70MPa复合材料氢气瓶液压疲劳试验装置及压力和温度控制方法研究[D]. 杭州:浙江大学, 2014. CHEN Ganghong. Research on hydraulic fatigue test system for 70MPa composite hydrogen cylinder and control method of pressure and temperature[D]. Hangzhou:Zhejiang University, 2014.
[14] 欧训民. 氢能制取和储存技术研究发展综述[J]. 能源研究与信息, 2009(1):1-4+16. OU Xunmin. A review on the research and development of hydrogen production and storage technologies[J]. Energy Research and Information, 2009(1):1-4+16.
[15] 杨妙梁. 世界燃料电池车发展动向(三)——丰田燃料电池车开发与制氢、储氢技术概况[J]. 汽车与配件, 2005(5):34-37.
[16] 杨文刚, 李文斌, 林松, 等. 碳纤维缠绕复合材料储氢气瓶的研制与应用进展[J]. 玻璃钢/复合材料, 2015(12):99-104. YANG Wengang, LI Wenbin, LIN Song, et al. Research and application progress of carbon fiber composite hydrogen storage cylinder[J]. Fiber Reinforced Plastic/Composites, 2015(12):99-104.
[17] 冯慧聪. 移动加氢站技术方案研究[J]. 中国科技信息, 2008(12):42-44. FENG Huicong. Research on technical solution of mobile hydrogen refueling station[J]. China Science and Technology Information, 2008(12):42-44.
[18] 欧可升. 碳纤维全缠绕复合材料高压储氢气瓶耐局部火烧性能研究[D]. 杭州:浙江大学, 2014. OU Kesheng. Research on fully-wrapped carbon fiber reinforced composite high-pressure hydrogen storage cylinder subjected to localized fire[D]. Hangzhou:Zhejiang University, 2014.
[19] 许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006,18(Z1):200-210. XU Wei, TAO Zhanliang, CHEN Jun. Progress of research on hydrogen storage[J]. Progress in Chemistry, 2006,18(Z1):200-210.
[20] 陈卓, 杨运泉, 包建国, 等. 氢能载体甲基环己烷在Ni/γ-Al2O3上的脱氢反应[J]. 化工进展, 2010, 29(3):484-489. CHEN Zhuo, YANG Yunquan, BAO Jianguo, et al. Catalytic performance of Ni/γ-Al2O3 for hydrogen carrier methylcyclohexane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2010, 29(3):484-489.
[21] PING H, XU G, WU S. System optimization of cyclohexane dehydrogenation under multiphase reaction conditions using the uniform design method[J]. International Journal of Hydrogen Energy, 2015, 40(46):15923-15932.
[22] CROMWELL D K, VASUDEVAN P T, PAWELEC B, et al. Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst[J]. Catalysis Today, 2016, 259(Part 1):119-129.
[23] TIEN P D, SATOH T, MIURA M, et al. Continuous hydrogen evolution from cyclohexanes over platinum catalysts supported on activated carbon fibers[J]. Fuel Processing Technology, 2008, 89(4):415-418.
[24] 贺恒. 氢能载体甲基环己烷脱氢催化剂Ni-Cu/γ-Al2O3的制备及其反应性能[D]. 湘潭:湘潭大学, 2011. HE Heng. The preparation of the hydrogen carrier methylcyclohexane's dehydrogenation catalyst Ni-Cu//γ-Al2O3 and its reaction performance[D]. Xiangtan:Xiangtan University, 2011.
[25] 孔文静. 咔唑加脱氢性能研究[D]. 杭州:浙江大学, 2012. KONG Wenjing. Study on the hydrogen uptake and release performance of carbazole[D]. Hangzhou:Zhejiang University, 2012.
[26] LEWANDOWSKI M. Hydrotreating activity of bulk NiB alloy in model reaction of hydrodenitrogenation of carbazole[J]. Applied Catalysis B:Environmental, 2015, 168/169(Supplement C):322-332.
[27] WAN C, AN Y, CHEN F, et al. Kinetics of N-ethylcarbazole hydrogenation over a supported Ru catalyst for hydrogen storage[J]. International Journal of Hydrogen Energy, 2013, 38(17):7065-7069.
[28] SUN F, AN Y, LEI L, et al. Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni[J]. Journal of Energy Chemistry, 2015, 24(2):219-224.
[29] 王锋, 杨运泉, 王威燕, 等. 芳烃储氢技术研究进展[J]. 化工进展, 2010, 29(10):1877-1884. WANG Feng, YANG Yunquan, WANG Weiyan, et al. Progress in hydrogen chemical storage technologies with aromatics[J]. Chemical Industry and Engineering Progress, 2010, 29(10):1877-1884.
[30] 寇小文, 顾雄毅, 李平. 氢能载体十氢萘制氢表观动力学[J]. 化工进展, 2015, 34(9):3279-3285. KOU Xiaowen, GU Xiongyi, LI Ping. Apparent kinetics of hydrogen production from hydrogen carrier decalin[J]. Chemical Industry and Engineering Progress, 2015, 34(9):3279-3285.
[31] JIANG Z, PAN Q, XU J, et al. Current situation and prospect of hydrogen storage technology with new organic liquid[J]. International Journal of Hydrogen Energy, 2014, 39(30):17442-17451.
[32] 周鹏, 刘启斌, 隋军, 等. 化学储氢研究进展[J]. 化工进展, 2014, 33(8):2004-2011. ZHOU Peng, LIU Qibin, SUI Jun, et al. Research progress in chemical hydrogen storage[J]. Chemical Industry and Engineering Progress, 2014, 33(8):2004-2011.
[33] 小岛由继. 水素キャリアとしてのアンモニア[J]. Journal of the Japan Institute of Energy, 2016, 95(5):364-370.
[34] 罗承先. 世界氢能储运研究开发动态[J]. 中外能源, 2017, 22(11):41-49. LUO Chengxian. Research and development of hydrogen storage and transportation worldwide[J]. Sino-global Energy, 2017, 22(11):41-49.
[35] 陈军, 朱敏. 高容量储氢材料的研究进展[J]. 中国材料进展, 2009, 28(5):2-10. CHEN Jun, ZHU Min. Progress in research of hydrogen storage materials with high capacity[J]. Matericals China, 2009, 28(5):2-10.
[36] 毕庆员. 基于甲酸/甲酸盐制氢及储氢多相催化体系的构建[D]. 上海:复旦大学, 2013. BI Qingyuan. Construction of heterogeneous catalytic system for hydrogen generation and storage based on formic acid/formates[D]. Shanghai:Fudan University, 2013.
[37] LIN L, ZHOU W, GAO R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83.
[38] 应燕君. La-Mg-Ni系AB(3.0-3.5)型储氢合金结构与储氢性能研究[D]. 上海:上海交通大学, 2012. YING Yanjun. Studies on the structure and hydrogen storage properties of La-Mg-Ni system AB3.0-3.5 type alloys[D]. Shanghai:Shanghai Jiao Tong University, 2012.
[39] YADAV T P, SHAHI R R, SRIVASTAVA O N. Synthesis, characterization and hydrogen storage behaviour of AB2(ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials[J]. International Journal of Hydrogen Energy, 2012, 37(4):3689-3696.
[40] BOUOUDINA M, GRANT D, WALKER G. Review on hydrogen absorbing materials-Structure, microstructure, and thermodynamic properties[J]. International Journal of Hydrogen Energy, 2006, 31(2):177-182.
[41] 汪云华, 王靖坤, 赵家春, 等. 固体储氢材料的研究进展[J]. 材料导报, 2011, 25(9):120-124. WANG Yunhua, WANG Jingkun, ZHAO Jiachun, et al. Research progress of solid-state hydrogen storage materials[J]. Matericals Review, 2011, 25(9):120-124.
[42] 周理. 氢能利用与高表面活性炭吸附储氢技术[J]. 科技导报, 1999(12):10-11. ZHOU Li. Impacts of the adsorptive storage of hydrogen on superactivated carbons to large-scale utilization of hydrogen energy[J]. Science and Technology Review, 1999(12):10-11.
[43] 詹亮, 李开喜, 朱星明, 等. 超级活性炭储氢性能研究[J]. 材料科学与工程, 2002, 20(1):31-34+57. ZHAN Liang, LI Kaixi, ZHU Xingming, et al. The preparation of super-activated carbons and its properties for hydrogen storage[J]. Materials Science &Engineering, 2002, 20(1):31-34+57.
[44] ANGELA D L. Hydrogen storage in graphite nanofibers:effect of synthesis catalyst and pretreatment conditions[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2004, 20(17):7346-7346
[45] YADAV A, VERMA N. Enhanced hydrogen storage in graphitic carbon micro-nanofibers at moderate temperature and pressure:Synergistic interaction of asymmetrically-dispersed nickel-ceria nanoparticles[J]. International Journal of Hydrogen Energy, 2017, 42(44):27139-27153.
[46] 白朔, 侯鹏翔, 范月英, 等. 一种新型储氢材料-纳米炭纤维的制备及其储氢特性[J]. 材料研究学报, 2001, 15(1):77-82. BAI Suo, HOU Pengxiang, FAN Yueying, et al. Large-scale synthesis and hydrogen storage of a new kind hydrogen storage material-carbon nanofibers[J]. Chinese Journal of Materials Research, 2001, 15(1):77-82.
[47] ADAMSKA M, NARKIEWICZ U. Fluorination of carbon nanotubes-A review[J]. Journal of Fluorine Chemistry, 2017, 200(Supplement C):179-189.
[48] 曲海芹, 娄豫皖, 杜俊霖, 等. 碳质储氢材料的研究进展[J]. 材料导报, 2014, 28(13):69-71+77. QU Haiqin, LOU Yuwan, DU Junlin, et al. Research progress of carbin-based hydrogen storage materials[J]. Matericals Review, 2014, 28(13):69-71+77.
[49] 王凤玲. Zr基MOFs材料储氢性能及改性研究[D]. 大连:大连理工大学, 2016. WANG Fengling. Study of the hydrogen storage properties and modification of Zr-based MOFs[D]. Dalian:Dalian University of Technology, 2016.
[50] 陈俊, 陈秋雄, 陈运文, 等. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2):131-140. CHEN Jun, CHEN Qiuxiong, CHEN Yunwen, et al. Current status of energy storage using hydrates[J]. Energy Storage Science and Technology, 2015, 4(2):131-140.
[51] VELUSWAMY H P, KUMAR R, LINGA P. Hydrogen storage in clathrate hydrates:Current state of the art and future directions[J]. Applied Energy, 2014, 122(Supplement C):112-132.
[52] MAO W L, MAO H K. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3):708.
[53] VELUSWAMY H P, KUMAR R, LINGA P. Hydrogen storage in clathrate hydrates:Current state of the art and future directions[J]. Applied Energy, 2014, 122:112-132.
[54] 谢应明, 龚金明, 刘道平, 等. 一种新型储氢方法——水合物储氢的研究概况与发展方向[J]. 化工进展, 2010, 29(5):796-800+806. XIE Yingming, GONG Jinming, LIU Daoping, et al. Hydrogen stored in hydrates——A novel hydrogen storage method[J]. Chemical Industry and Engineering Progress, 2010, 29(5):796-800+806.
[55] STRUZHKIN V V, MILITZER B, MAO W L, et al. Hydrogen storage in molecular clathrates[J]. Chemical Reviews, 2007, 107(10):4133-4151.
[56] GRIM R G, KERKAR P B, SHEBOWICH M, et al. Synthesis and characterization of si clathrate hydrates containing hydrogen[J]. The Journal of Physical Chemistry C, 2012, 116(34):18557-18563.
[57] BABAEE S, HASHEMI H, JAVANMARDI J, et al. Thermodynamic model for prediction of phase equilibria of clathrate hydrates of hydrogen with different alkanes, alkenes, alkynes, cycloalkanes or cycloalkene[J]. Fluid Phase Equilibria, 2012, 336:71-78.
[58] MULDER F M, WAGEMAKER M, VAN EIJCK L, et al. Hydrogen in porous tetrahydrofuran clathrate hydrate[J]. ChemPhysChem, 2008, 9(9):1331-1337.
[59] TRUEBA A T, RADOVIĆ I R, ZEVENBERGEN J F, et al. Kinetic measurements and in situ Raman spectroscopy study of the formation of TBAF semi-hydrates with hydrogen and carbon dioxide[J]. International Journal of Hydrogen Energy, 2013, 38(18):7326-7334.
[60] DESCHAMPS J, DALMAZZONE D. Hydrogen storage in semiclathrate hydrates of tetrabutyl ammonium chloride and tetrabutyl phosphonium bromide[J]. Journal of Chemical & Engineering Data, 2010, 55(9):3395-3399.
[61] HSIEH Y N, HUANG P C, SUN I W, et al. Nafion membrane-supported ionic liquid-solid phase microextraction for analyzing ultra trace PAHs in water samples[J]. Analytica Chimica Acta, 2006, 557(1):321-328. |