[1] 吴宇平, 万春荣. 锂离子二次电池[M]. 北京:化学工业出版社, 2002:336-349. WU Y P, WAN C R. Lithium ion secondary battery[M]. Beijing:Chemical Industry Press, 2002:336-349.
[2] YUAN L X, WANG Z H, ZHANG W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2):269-284.
[3] ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5 Mn1.5O4[J]. Electrochimica Acta, 2011, 56(18):6554-6561.
[4] 黄震雷, 武斌, 王永庆, 等. 锂离子电池正极材料产业化技术进展[J]. 储能科学与技术, 2015, 4(6):537-545. HUANG Z L, WU B, WANG Y Q, et al. Technology progress of cathode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2015, 4(6):537-545.
[5] 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1):55-62. PENG J Y,ZU C X,LI H. Fundamental scientific aspects of lithium batteries(I)——Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1):55-62.
[6] LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources, 1999, 81/82(9):416-419.
[7] MANTHIRAM A, MURUGAN A, SARKAR A. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2008, 1:621-638.
[8] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 46(26):4440-4457.
[9] MANTHIRAM A, KNIGHTJ C, MYUNG S, et al. Nickel-rich and lithium-rich layered oxide cathodes:Progress and perspectives[J]. Advanced Energy Materials, 2016, 6(1):1-23.
[10] 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学:化学, 2014(7):1104-1115. ZOU B K, DING C X, CHEN C H. Research progress in ternary cathode materials Li(Ni, Co, Mn)O2 for lithium ion batteries[J]. Scientia Sinica Chimica, 2014(7):1104-1115.
[11] DUAN J, HU G, CAO Y, et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping[J]. Journal of Power Sources, 2016, 326:322-330.
[12] HUANG Z, WANG Z, ZHENG X, et al. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182:795-802.
[13] XUE L, LI Y, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys & Compounds, 2018, 748:561-568.
[14] DIXIT M, SCHIPPER F, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy:Zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41):16073-16084.
[15] LI L, WANG Z X, LIU Q C, et al. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8-xCo0.1Mn0.1CrxO2[J]. Electrochimica Acta, 2012, 77(9):89-96.
[16] PENG Y, WANG Z, GUO H, et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz, cathode materials[J]. Electrochimica Acta, 2013, 92(1):1-8.
[17] XIONG X, WANG Z, GUO H, et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60℃[J]. Journal of Materials Chemistry A, 2012, 1(4):1284-1288.
[18] JUN L, QING P, WEIYANG W, et al. Nanoscale coating of LiMO2 (M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3:Toward better rate capabilities for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(5):1649-1652.
[19] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11):942-947.
[20] LIM B, YOON S, PARK K, et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015, 25(29):4673-4680.
[21] YANG Z H, LU J B, BIAN D C, et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries[J]. Journal of Power Sources, 2014, 272:144-151.
[22] 夏青, 赵俊豪, 王凯, 等. 基于分级共沉淀法制备锂离子电池LiNi0.5Co0.2Mn0.3O2正极材料[J]. 化工学报, 2017, 68(3):1239-1246. XIA Q, ZHAO J H, WANG K, et al. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode materials by stepwise co-precipitation[J]. Journal of Chemical Industry and Engineering(China), 2017, 68(3):1239-1246.
[23] LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 7(12):A503-A506.
[24] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125.
[25] JARVIS K A, DENG Z, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries:Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16):3614-3621.
[26] LEE S H, MOON J S, LEE M S, et al. Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries[J]. Journal of Power Sources, 2015, 281:77-84.
[27] GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13 Co0.13] O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1):84-86.
[28] ZHENG Y, CHEN L, SU Y F, et al. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials[J]. Journal of Materials Chemistry A, 2017, 5(46):24292-24298.
[29] WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13] O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009, 19(28):4965-4972.
[30] ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chemistry of Materials, 2014, 26(22):6320-6327.
[31] HU E Y, LYU Y C, XIN H L, et al. Explore the effects of microstructural defects on voltage fade of Li-and Mn-rich cathodes[J]. Nano Letters, 2016, 16(10):5999-6007.
[32] WU X, CHEN F, JIN Y, et al. Silver-copper nanoalloy catalyst layer for bifunctional air electrodes in alkaline media[J]. ACS Applied Materials & Interfaces, 2015, 7(32):17782-17791.
[33] ATES M N, MUKERJEE S, ABRAHAM K M. A Li-rich layered cathode material with enhanced structural stability and rate capability for Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A355-A363.
[34] GUO B, ZHAO J H, FAN X M, et al. Aluminum and fluorine co-doping promotes stable and safe lithium-rich layered cathode material[J]. Electrochimica Acta, 2017, 236:171-179.
[35] ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16):1707255.
[36] ZHANG J W, GUO X, YAO S M, et al. Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via aurea-based precipitation method[J]. Journal of Power Sources, 2013, 238:245-250.
[37] MA G, LI S, GUO B, et al. A general and mild approach to controllable preparation of manganese-based micro-and nanostructured bars for high performance lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 128(11):3667-3671.
[38] AMINE K, TUKAMOTOH, YASUDA H, et al. Preparation and electrochemical investigation of LiMn2-xMexO4, (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68(2):604-608.
[39] ZHONG Q, BONAKDARPOUR A, ZHANG M, et al. Synthesis and electrochemistry of LiNixMn2-xO4[J]. Journal of the Electrochemical Society, 1997, 144(1):205-213.
[40] YANG J,HAN X, ZHANG X, et al. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries:Nano vs micro, ordered phase vs disordered phase[J]. Nano Research, 2013, 6(9):679-687.
[41] LI S, MA G, GUO B, YANG Z H, et al. Kinetically-controlled synthesis of LiNi0.5Mn1.5O4 micro/nano-structured hollow spheres as high-rate cathode materials for lithium ion batteries[J]. Industrial & Engineering Chemistry Research, 2016, 55(35):9352-9361.
[42] WANG H, BEN L, YU H, et al. Understanding the effects of surface reconstruction on electrochemical cycling performance of spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. Journal of Materials Chemistry A, 2016, 5(2):822-834.
[43] ARUNKUMAR T A, MANTHIRAM A. Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5-yNi0.5-zMy+zO4 (M=Li, Mg, Fe, Co, and Zn)[J]. Electrochemical & Solid State Letters, 2005, 8(8):A403-A405.
[44] SHIN D W, MANTHIRAM A. Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries[J]. Electrochemistry Communications, 2011, 13(11):1213-1216.
[45] ZHANG Z, HU L, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6):1806-1810. |