储能科学与技术 ›› 2018, Vol. 7 ›› Issue (4): 618-630.doi: 10.12028/j.issn.2095-4239.2018.0029
袁艳1, 郑东东1, 方钊1, 刘漫博1, 李涛2
收稿日期:
2018-02-11
修回日期:
2018-03-18
出版日期:
2018-07-01
发布日期:
2018-07-01
通讯作者:
袁艳(1982-),女,博士,讲师,研究方向为新能源材料与器件,E-mail:lingyi21@126.com
作者简介:
袁艳(1982-),女,博士,讲师,研究方向为新能源材料与器件,E-mail:lingyi21@126.com
基金资助:
YUAN Yan1, ZHENG Dongdong1, FANG Zhao1, LIU Manbo1, LI Tao2
Received:
2018-02-11
Revised:
2018-03-18
Online:
2018-07-01
Published:
2018-07-01
摘要: 锂硫电池具有能量密度高、原料低廉、绿色环保等优势,已成为下一代高性能二次电池的研究热点,但是活性材料利用率低、容量衰减较快、自放电严重等问题,极大地阻碍了该电池的实用化进程。正极是电池的核心部件,要实现锂硫电池的性能提升,必须对硫正极的组分结构进行合理的设计与构建。本文首先分析锂硫电池的工作原理、存在问题及解决途径,然后分别从硫正极的活性材料、集流体、表面涂层、黏结剂、添加剂等5个方面对当前的研究现状进行总结,最后对其未来的发展前景做出展望,文章指出,硫正极更应关注真实的能量密度水平,而锂硫电池的研究视野不应局限于正极材料。
中图分类号:
袁艳, 郑东东, 方钊, 刘漫博, 李涛. 锂硫电池硫正极技术研究进展[J]. 储能科学与技术, 2018, 7(4): 618-630.
YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery[J]. Energy Storage Science and Technology, 2018, 7(4): 618-630.
[1] SEH Z W, SUN Y, ZHANG Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20):5605-5634. [2] 刁岩, 谢凯, 洪晓斌, 等. Li-S电池硫正极性能衰减机理分析及研究现状概述[J]. 化学学报, 2013, 71(4):508-518. DIAO Yan, XIE Kai, HONG Xiaobin, et al. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery[J]. Acta Chimica Sinica, 2013, 71(4):508-518. [3] ZHANG S S. Liquid electrolyte lithium/sulfur battery:Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231:153-162. [4] OGOKE O, WU G, WANG X, et al. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(2):448-469. [5] KANG W, DENG N, JU J, et al. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale, 2016, 8(37):16541-16588. [6] 刘帅, 姚路, 章琴, 等. 高性能锂硫电池研究进展[J]. 物理化学学报, 2017, 33(12):2339-2358. LIU Shuai, YAO Lu, ZHANG Qin, et al. Advances in high-performance lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12):2339-2358. [7] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries:Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2:76-106. [8] YANG Y, ZHENG G, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7):3018-3032. [9] CAI J, WU C, ZHU Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources, 2017, 341:165-174. [10] QIN F, WANG X, ZHANG K, et al. High areal capacity cathode and electrolyte reservoir render practical Li-S batteries[J]. Nano Energy, 2017, 38:137-146. [11] CHONG W G, HUANG J Q, XU Z L, et al. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers[J]. Advanced Functional Materials, 2017, 27(4):1604815. [12] BORCHARDT L, OSCHATZ M, KASKEL S. Carbon materials for lithium sulfur batteries-ten critical questions[J]. Chemistry-A European Journal, 2016, 22(22):7324-7351. [13] JI X, LEE K T NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506. [14] HE G, JI X, NAZAR L. High "C" rate Li-S cathodes:Sulfur imbibed bimodal porous carbons[J]. Energy & Environmental Science, 2011, 4(8):2878-2883. [15] HU L, LU Y, LI X, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13:1603533. [16] ZHAO C, LIU L, ZHAO H, et al. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries[J]. Nanoscale, 2014, 6(2):882-888. [17] ZHANG K, QIN F, LAI Y, et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2016, 8(9):6072-6081. [18] XI K, CHEN B, LI H, et al. Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium-sulphur battery[J]. Nano Energy, 2015, 12:538-546. [19] GUEON D, HWANG J T, YANG S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1):226-233. [20] SUN F, WANG J, CHEN H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(12):5630-5638. [21] YU M, MA J, XIE M, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11):1602347. [22] LEE J S, MANTHIRAM A. Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2017, 343:54-59. [23] JI L, RAO M, ALONI S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011, 4(12):5053-5059. [24] ZHENG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10):4462-4467. [25] ZHENG G, ZHANG Q, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3):1265-1270. [26] YUAN Y, LU H, FANG Z, et al. Preparation and performance of sulfur-carbon composite based on hollow carbon nanofiber for lithium-sulfur batteries[J]. Ionics, 2016, 22(9):1509-1515. [27] RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14:271-279 [28] JI L, RAO M, ZHENG H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the America Chemical Society, 2011, 133(46):18522-18525. [29] GAO X, LI J, GUAN D, et al. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency[J]. ACS Applied Materials & Interfaces, 2014, 6(6):4154-4159. [30] DING B, YUAN C, SHEN L, et al. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(4):1096-1101. [31] WANG X, ZHANG Z, QU Y, et al. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 256:361-368. [32] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications, 2014, 5:3410-3417. [33] CHENG H, WANG S. Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2014, 2(34):13783-13794. [34] 王维坤, 余仲宝, 苑克国, 等. 高比能锂硫电池关键材料的研究[J]. 化学进展, 2011, 23(2/3):540-547. WANG Weikun, YU Zhongbao, YUAN Keguo, et al. Key materials of high energy lithium sulfur batteries[J]. Progress in Chemistry, 2011, 23(2/3):540-547. [35] WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14):963-965. [36] WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6):487-492. [37] ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the America Chemical Society, 2013, 135(44):16736-16743. [38] LI W, ZHANG Q, ZHENG G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters, 2013, 13(11):5534-5540. [39] LIM S, THANKAMONY R L, YIM T, et al. Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1401-1405. [40] SUN Z, XIAO M, WANG S, et al. Electrostatic shield effect:An effective way to suppress dissolution of polysulfide anions in lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(38):15938-15944. [41] JI X, EVERS S, BLACK R, et al. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs[J]. Nature Communications, 2011, 2:325-341. [42] LI J, DING B, XU G, et al. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries[J]. Nanoscale, 2013, 5:5743-5746. [43] ZHANG X, XIE H, KIM C S, et al. Advances in lithium-sulfur batteries[J]. Materials Science and Engineering, 2017, 121:1-29. [44] WEI S Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4:1331-1336. [45] DING B, SHEN L, XU G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery[J]. Electrochimica Acta, 2013, 107:78-84. [46] KIM C S, GUERFI A, HOVINGTON P, et al. Facile dry synthesis of sulfur-LiFePO4 core-shell composite for the scalable fabrication of lithium/sulfur batteries[J]. Electrochemistry Communications, 2013, 32:35-38. [47] HAO Z, YUAN L, CHEN C, et al. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(45):17711-17717. [48] ZHANG H, ZUO P, HUA J, et al. Improved rate performance of lithium sulfur batteries by in-situ anchoring of lithium iodide in carbon/sulfur cathode[J]. Electrochimica Acta, 2017, 238:257-262. [49] SU D, CORTIE M, FAN H, et al. Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29:1700587. [50] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8:14627-14634. [51] ZHENG C, NIU S, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33:306-312. [52] LEE K T, BLACK R, YIM T, et al. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials, 2012, 2(12):1490-1496. [53] MIAO L X, WANG W K, WANG A B, et al. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(38):11659-11664. [54] HUANG X, SHI K, YANG J, et al. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance[J]. Journal of Power Sources, 2017, 356:72-79. [55] LIU J, WANG C, LIU B, et al. Rational synthesis of MnO2@CMK/S composite as cathode materials for lithium-sulfur batteries[J]. Materials Letters, 2017, 195:236-239. [56] YANG Y, YU G, CHA J J, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. ACS Nano, 2011, 5(11):9187-9193. [57] HE F, YE J, CAO Y, et al. Coaxial three-layered carbon/sulfur/polymer nanofibers with high sulfur content and high utilization for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11626-11633. [58] ZHOU G, PEI S, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26:625-631. [59] FANG R, ZHAO S, PEI S, et al. Toward more reliable lithium-sulfur batteries:An all-graphene cathode structure[J]. ACS Nano, 2016, 10(9):8676-8682. [60] XI K, KIDAMBI P R, CHEN R, et al. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries[J]. Nanoscale, 2014, 6(11):5746-5753. [61] LI T, HONG B, CAO H, et al. Carbon-coated aluminum foil as current collector for improving the performance of lithium sulfur batteries[J]. International Journal of Electrochemical Science, 2017,12(4):3099-3108. [62] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787. [63] CHUNG S H, MANTHIRAM A. Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries[J]. Electrochemistry Communications, 2014, 38:91-95. [64] WALUŚ S, BARCHASZ C, BOUCHET R, et al. Investigation of non-woven carbon paper as a current collector for sulfur positive electrode-understanding of the mechanism and potential applications for Li/S batteries[J]. Electrochimica Acta, 2016, 211:697-703. [65] ZHAO Q, HU X, ZHANG K, et al. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries[J]. Nano Letters, 2015, 15(1):721-726. [66] LIU L J, CHEN Y, ZHANG Z F, et al. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries[J]. Journal of Power Sources, 2016, 325:301-305. [67] OH S J, LEE J K, YOON W Y. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes[J]. Chemsuschem, 2015, 7(9):2562-2566 [68] ZHANG M, MENG Q, AHMAD A, et al. Poly(3,4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(33):17647-17652. [69] FANG J, QIN F, LI J, et al. Improved performance of sulfur cathode by an easy and scale-up coating strategy[J]. Journal of Power Sources, 2015, 297:265-270. [70] CHOI Y J, CHUNG Y D, BAEK C Y, et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell[J]. Journal of Power Sources, 2008, 184(2):548-552. [71] TANG Q, SHAN Z, WANG L, et al. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 246:253-259. [72] ZHANG S S, TRAN D T, ZHANG Z. Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery[J]. Journal of Materials Chemistry A, 2014, 2(43):18288-18292. [73] SONG J, NOH H, LEE J, et al. In situ coating of poly (3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 332:72-78. [74] JIN L, LI G, LIU B, et al. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer[J]. Journal of Power Sources, 2017, 355:147-153. [75] JIN J, WEN Z, WANG Q, et al. Protected sulfur cathode with mixed conductive coating layer for lithium sulfur battery[J]. JOM, 2016, 68(10):2601-2606. [76] LI T, YUAN Y, HONG B, et al. Hybrid polyacrylamide/carbon coating on sulfur cathode for advanced lithium sulfur battery[J]. Electrochimica Acta, 2017, 244:192-198. [77] CHEN L, SHAW L L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267:770-783. [78] XU G, YAN Q, KUSHIMA A, et al. Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery[J]. Nano Energy, 2017, 31:568-574. [79] LING M, ZHANG L, ZHENG T, et al. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery[J]. Nano Energy, 2017, 38:82-90. [80] DUAN X, HAN Y, LI Y, et al. Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food[J]. RSC Advances, 2014, 4(105):60995-61000. [81] ZHONG Y J, LIU Z, ZHENG X, et al. Rate performance enhanced Li/S batteries with a Li ion conductive gel-binder[J]. Solid State Ionics, 2016, 289:23-27. [82] SUN J, HUANG Y, WANG W, et al. Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries[J]. Electrochimica Acta, 2008, 53(24):7084-7088. [83] SUN J, HUANG Y, WANG W, et al. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder[J]. Electrochemistry Communications, 2008, 10(6):930-933. [84] LACEY M J, JESCHULL F, EDSTR M K, et al. Functional, water-soluble binders for improved capacity and stability of lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 264:8-14. [85] LU Y Q, LI J T, PENG X X, et al. Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder[J]. Electrochemistry Communications, 2016, 72:79-82. [86] PAN J, XU G, DING B, et al. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries[J]. RSC Advances, 2016, 6(47):40650-40655. [87] AI G, DAI Y, YE Y, et al. Investigation of surface effects through the application of the functional binders in lithium sulfur batteries[J]. Nano Energy, 2015, 16:28-37. [88] CHOI Y J, KIM K W, AHN H J, et al. Improvement of cycle property of sulfur electrode for lithium/sulfur battery[J]. Journal of Alloys and Compounds, 2008, 449(1/2):313-316. [89] SONG M S, HAN S C, KIM H S, et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li-S secondary batteries[J]. Journal of the Electrochemical Society, 2004, 151(6):A791-A795. [90] XIE K, YOU Y, YUAN K, et al. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement[J]. Advanced Materials, 2017, doi:10.1002/adma.201604724. [91] PENG Z, LI R, GAO J, et al. Effective sulfur-salt composite cathode containing lithium bis(trifluoromethane) sulfonamide for lithium sulfur batteries[J]. Electrochimica Acta, 2016, 220:130-136. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[3] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[4] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[5] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[6] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[7] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[8] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[9] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[10] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[11] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[12] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[13] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[14] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[15] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||