[1] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15:135-144.
[2] QIAN J, ADAMS B D, ZHENG J, et al. Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2016, 26(39):7094-7102.
[3] LI N, YIN Y, YANG C, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9):1853-1858.
[4] HAN Y, DUAN X, LI Y, et al. Improved cycling performances with high sulfur loading enabled by pre-treating lithium anode[J]. Ionics, 2016, 22(2):151-157.
[5] MORISHITA T, KOJIMA Y, MARUTA T, et al. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light[J]. Nano Letters, 2014, 14(10):doi:10.1093/pcp/pcp159.
[6] WOO J J, MARONI V A, GAO L, et al. Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion[J]. Journal of the Electrochemical Society, 2014, 161(5):A827-A830.
[7] XIANG H, SHI P, BHATTACHARYA P, et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes[J]. Journal of Power Sources, 2016, 318:170-177.
[8] ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3):doi:https://doi.org/10.1038/nenergy. 2017.12.
[9] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15):2888-2895.
[10] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6:doi:10.1038/ncomms7362.
[11] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8):618-623.
[12] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on first principles calculations[J]. ACS Appl. Mater. Interfaces, 2015, 7:23685-23693.
[13] LV D, SHAO Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Advanced Energy Materials, 2015, 5(3):doi:https://doi.org/10.1002/aenm.201400993.
[14] XIANG H, SHI P, BHATTACHARYA P, et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes[J]. Journal of Power Sources, 2016, 318:170-177.
[15] ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10):doi:https://doi.org/10.1002/adfm.201605989.
[16] LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6:doi:https://doi.org/10.1038/ncomms8436.
[17] EPELBOIN I, FROMENT M, GARREAU M, et al. Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate[J]. Journal of the Electrochemical Society, 1980, 127(10):2100-2104.
[18] JIAO S, ZHENG J, LI Q, et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries[J]. Joule, 2017, 10:110-124.
[19] DING F, XU W, CHEN X, et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode[J]. Journal of the Electrochemical Society, 2013, 160(10):A1894-A1901.
[20] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11):4450-4456.
[21] ZHANG Y, QIAN J, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12):6889-6896.
[22] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3):doi:https://doi.org/10.1002/advs.201600445.
[23] NISHIDA T, NISHIKAWA K, ROSSO M, et al. Optical observation of Li dendrite growth in ionic liquid[J]. Electrochimica Acta, 2013, 100(7):333-341.
[24] HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ, measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6):265-274.
[25] SAGANE F, IKEDA K I, OKITA K, et al. Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface[J]. Journal of Power Sources, 2013, 233(7):34-42.
[26] BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9(10):3221-3229.
[27] KUSHIMA A, KANG P S, CONG S, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution:Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32:271-279.
[28] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ, study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10/11):1569-1574.
[29] MIN S P, SANG B M, DONG J L, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4(1):doi:10.1038/srep03815.
[30] SANO H, SAKAEBE H, MATSUMOTO H. Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte[J]. Journal of Power Sources, 2011, 196(16):6663-6669.
[31] HERNANDEZ-MAYA R, ROSAS O, SAUNDERS J, et al. Dynamic characterization of dendrite deposition and growth in Li-surface by electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2015, 162(4):A687-A696.
[32] STEIGER J, KRAMER D, MÖNIG R. Mechanisms of dendritic growth investigated by in situ, light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261(5):112-119.
[33] WOOD K, KAZYAK E, CHADWICK A F, et al. Dendrites and pits:Untangling the complex behaviorof lithium metal anodes through operando video microscopy[J]. ACS Central Science, 2015, 2(11):doi:10.1021/acscentsci.6b00260.
[34] MCDOWELL M T, LEE S W, RYU I, et al. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes[J]. Nano Letters, 2011, 11(9):4018-4025.
[35] ZENG Z, LIANG W, LIAO H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4):1745-1750.
[36] SUN M, LIAO H G, NIU K, et al. Structural and morphological evolution of lead dendrites during electrochemical migration[J]. Scientific Reports, 2013, 3(10):doi:https://doi.org/10.1038/srep03227.
[37] KUSHIMA A, KANG P S, CONG S, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution:Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32:271-279.
[38] DE J N, ROSS F M. Electron microscopy of specimens in liquid[J]. Nature Nanotechnology, 2011, 6(11):695-704.
[39] MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2):doi:https://doi.org/10.1002/jemt.22675.
[40] HAMMAD F M, CHAKRAVADHANULA V S, REDDY M A, et al. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries:Preparation, prospects, and challenges[J]. Microscopy Research & Technique, 2016, 79(7):615-624.
[41] MEHDI B L, QIAN J, NASYBULIN E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM[J]. Nano Letters, 2015, 15(3):2168-2173.
[42] SACCI R L, DUDNEY N J, MORE K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014, 50(17):2104-2107.
[43] MISRA S, LIU N, NELSON J, et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes[J]. ACS Nano, 2012, 6(6):5465-5473.
[44] ORSINI F, PASQUIER A D, BEAUDOIN B, et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. Journal of Power Sources, 1998, 76(1):19-29.
[45] LI W, ZHENG H, CHU G, et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation:A top view investigation[J]. Faraday Discussions, 2014, 176:doi:10.1039/C4FD00124A.
[46] RONG G, ZHANG X, ZHAO W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13):doi:https://doi.org/10.1002/adma.201606187.
[47] NAGAO M, HAYASHI A, TATSUMISAGO M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics Pccp, 2013, 15(42):18600-18606.
[48] LIMTHONGKUL P, JANG Y I, DUDNEY N J, et al. Electrochemically-driven solid-state amorphization in lithium-metal anodes[J]. Journal of Power Sources, 2003, 119-121(3):604-609.
[49] ZHANG R, CHENG X, ZHAO C, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11):https://doi.org/10.1002/adma.201504117.
[50] SHUI J L, OKASINSKI J S, KENESEI P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature Communications, 2013, 4(4):doi:https://doi.org/10.1038/ncomms3255.
[51] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1):69-73.
[52] UNOCIC R R, SUN X G, SACCI R L, et al. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy[J]. Microscopy & Microanalysis the Official Journal of Microscopy Society of America Microbeam Analysis Society Microscopical Society of Canada, 2014, 20(4):1029-1037.
[53] FU S, ZIELKE L, MARKÖTTER H, et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8):doi:10.1021/acsnano.6b03939.
[54] LIU K, BAI P, BAZANT M Z, et al. Soft non-porous separator and its effectiveness in stabilizing Li metal anode cycling at 10 mA/cm2 observed in-situ in a capillary cell[J]. Journal of Materials Chemistry A, 2017, 5(9):4300-4307
[55] WANG X, ZHANG M, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17:7606-7612.
[56] BAJAJ V S, PAULSEN J, HAREL E, et al. Zooming in on microscopic flow by remotely detected MRI[J]. Science, 2010, 6007(330):doi:10.1126/science.1192313.
[57] KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249.
[58] BHATTACHARYYA R, KEY B, CHEN H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6):504-510.
[59] CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4):311-315.
[60] ZENG Z, LIANG W, LIAO H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4):1745-1750.
[61] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8):618-623. |