储能科学与技术 ›› 2018, Vol. 7 ›› Issue (S1): 54-62.doi: 1012028/j.issn.2095-4239.2018.0042

• 研究及进展 • 上一篇    下一篇

金属锂电极的原位物理表征

方聪聪1,2, 刘雯1, 王勇1, 郭瑞1, 裴海娟1, 于升学2, 解晶莹1   

  1. 1 空间电源技术国家重点实验室上海空间电源研究所, 上海 200245;
    2 燕山大学, 河北 秦皇岛 066004
  • 收稿日期:2018-03-23 修回日期:2018-04-10 出版日期:2018-12-05 发布日期:2018-12-05
  • 通讯作者: 解晶莹,教授,主要研究方向为锂二次电池,E-mail:jyxie@mail.sim.ac.cn。
  • 作者简介:方聪聪(1992-),女,硕士研究生,主要研究方向为二次锂电池金属锂负极的研究,E-mail:13581914725@163.com
  • 基金资助:
    国家自然科学基金(21373137),国家高技术研究发展计划项目(2014AA052202)及上海市自然科学基金(15DZ2282000)。

In suit physicial characterization of lithium anode

FANG Congcong1,2, LIU Wen1, WANG Yong1, GUO Rui1, PEI Haijuan1, YU Shengxue2, XIE Jingying1   

  1. 1 State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200254, China;
    2 Yanshan University, Qinhuangdao 066004, Hebei, China
  • Received:2018-03-23 Revised:2018-04-10 Online:2018-12-05 Published:2018-12-05

摘要: 伴随着人们对储能设备需求的不断提高,开发高能量密度的二次电池引发了广泛的关注。金属锂以其低密度、高理论比容量、最低的还原电势等优势成为了高性能二次电池负极材料的首选。然而金属锂负极在应用于锂二次电池时最大挑战是安全性和循环稳定性问题。金属锂沉积过程中易形成枝晶,锂枝晶的形成和持续生长将导致电池内部短路,枝晶断裂形成死锂导致不可逆容量增大,循环稳定性降低。进入20世纪90年代以后,观测和测试技术的进步不仅将人们的视线扩展到了锂枝晶现场生长层面,而且为锂枝晶的调控提供了有效途径。通过物理表征金属锂电极,探究锂枝晶生长行为,从而研究其生长机理与影响因素,有助于提出新的方法来提高金属锂电极的安全性、利用率和循环寿命。本文综述了近年来金属锂电极物理观测方面的研究进展,总结了现有的物理表征手段,对锂金属枝晶物理表征下一步发展进行了展望。

关键词: 金属锂, 物理表征, 锂枝晶, 原位观测, 可视电池

Abstract: With the development of people's high requirement of energy storage devices, the development of secondary batteries with high energy density has attracted wide attention. The high theoretical capacity and low electrochemical potential of the Li electrode make it an ideal anode for high-energy-density batteries. However, significant challenges including dendrite growth and low Columbic efficiency still hinder the practical applications of rechargeable lithium metal batteries. The formation and growth of Li dendrites during charging process (Li depositing on anode side) and the low Columbic efficiency resulted from the high reactivity of lithium metal with the electrolyte solvents and salt anions. The continuous growth of Li dendrites is undesirable because it may penetrate the polymer separator and cause internal short circuit, leading to cell failure and safety issues such as fire and even explosion. Since the 1990s, with the development of observation and testing technology, researchers' attention has extended to the in-suit growth of lithium dendrites. What's more, it also provided an effective way for the regulation of lithium dendrites. Through the physical characterization of lithium batteries, the growth mechanism and influencing factors were obtained via exploring the growth behavior of lithium dendrite, which is helpful to propose new methods to improve the safety, utilization and cycle life of lithium anode. In this paper, the research progress of physical observation of metallic lithium electrode is reviewed, the state-of-the-art physical representation methods are summarized and its further development are predicted.

Key words: lithium metal, physical representation, Li dendrites, in suit measurement, visual battery

中图分类号: