储能科学与技术 ›› 2015, Vol. 4 ›› Issue (1): 1-18.doi: 10.3969/j.issn.2095-4239.2015.01.001
• 特约评述 • 下一篇
黄祯, 杨菁, 陈晓添, 陶益成, 刘登, 高超, 龙鹏, 许晓雄
收稿日期:
2014-10-04
出版日期:
2015-02-19
发布日期:
2015-02-19
通讯作者:
许晓雄,博士,研究员,博士生导师,主要研究方向为全固态锂电池材料与大容量全固态锂电池技术,E-mail:xuxx@nimte.ac.cn。
作者简介:
黄祯(1985—),男,博士,助理研究员,主要研究方向为NASICON结构锂离子固体电解质材料的制备与改性,E-mail:huangzhen@nimte.ac.cn
基金资助:
HUANG Zhen, YANG Jing, CHEN Xiaotian, TAO Yicheng, LIU Deng, GAO Chao, LONG Peng, XU Xiaoxiong
Received:
2014-10-04
Online:
2015-02-19
Published:
2015-02-19
摘要: 全固态锂电池由于具有安全性高、循环寿命长、能量密度高等特点,在高安全化学电源领域具有非常好的应用前景。固体电解质材料是全固态锂电池的核心,迄今被研究过的锂离子固体电解质体系很多,但性能好的材料较少。NASICON型结构氧化物、石榴石型结构氧化物、硫化物体系等锂离子固体电解质在室温下具备高离子电导率,是最具有应用前景的3类锂离子固体电解质材料。本文针对近年来国内外在这3类固体电解质材料方面的研究现状,主要从其结构特征、制备方法、改性研究等方面进行了简要的概括,归纳出各种电解质材料的特点,最后阐述锂离子固体电解质材料应用于全固态锂电池中面临的挑战和发展的前景。
中图分类号:
黄祯, 杨菁, 陈晓添, 陶益成, 刘登, 高超, 龙鹏, 许晓雄. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18.
HUANG Zhen, YANG Jing, CHEN Xiaotian, TAO Yicheng, LIU Deng, GAO Chao, LONG Peng, XU Xiaoxiong. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18.
[1] Peng Jiayue(彭佳悦),Zu Chenxi(祖晨曦),Li Hong(李泓). Fundamental scientific aspects of lithium batteries(I)—Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(1):55-62. [2] Xu Xiaoxiong(许晓雄),Qiu Zhijun(邱志军),Guan Yibiao(官亦标),Huang Zhen(黄祯),Jin Yi(金翼). All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(4):331-341. [3] Lin Zuxiang(林祖纕),Guo Zhukun(郭祝昆). Fast Ionic Conductor(快离子导体)[M]. Shanghai:Shanghai Science and Technology Press(上海科学技术出版社),1983. [4] Dong Xiaochen(董晓臣),Wang Li(王立). Compositions,structures and properties of polymer electrolytes for lithium ion battery[J]. Progress in Chemistry (化学进展),2005,17(2):248-253. [5] Xu X,Wen Z,Wu J,Yang X. Preparation and electrical properties of NASICON-type structured Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 glass-ceramics by the citric acid-assisted sol-gel method[J]. Solid State Ionics ,2007,178(1-2):29-34. [6] Xu X,Wen Z,Yang X,Zhang J,Gu Z. High lithium ion conductivity glass-ceramics in Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 from nanoscaled glassy powders by mechanical milling[J]. Solid State Ionics ,2006,177(26-32):2611-2615. [7] Liu Wenyuan(刘文元),Fu Zhengwen(傅正文),Qin Qizong(秦启宗). Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery[J]. Acta Chimica Sinica (化学学报),2004,62(22):2223-2227. [8] Hagman L,Kierkegaard P. The crystal structure of NaMe 2 IV (PO 4 ) 3 ; Me IV = Ge,Ti,Zr [J]. Acta Chemica Scandinavica ,1968,22(6):1822-1832. [9] Goodenough J B,Hong H Y P,Kafalas J A. Fast Na + -ion transport in skeleton structures[J]. Materials Research Bulletin ,1976,11(2):203-220. [10] Anantharamulu N,Rao K K,Rambabu G,Kumar B V,Radha V,Vithal M. A wide-ranging review on NASICON type materials[J]. Journal of Materials Science ,2011,46(9):2821-2837. [11] Thangadurai V,Weppner W J F. Recent progress in solid oxide and lithium ion conducting electrolytes research[J]. Ionics ,2006,12(1):81-92. [12] Fergus J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources ,2010,195(15):4554-4569. [13] Zheng Yuelei(郑玥雷),Chen Renjie(陈人杰),Wu Feng(吴锋),Li Li(李丽). Progress of research on the conductive mechanism of the glassy electrolytes in lithium ion batteries[J]. Journal of Inorganic Materials (无机材料学报),2013,28(11):1172-1180. [14] Zheng Hao(郑浩),Gao Jian(高健),Wang Shaofei(王少飞),Li Hong(李泓). Fundamental scientific aspects of lithium batteries(VI)—Ionic transport in solids[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(6):620-635. [15] Aono H,Sugimoto E,Sadaoka Y,Imanaka N,Adachi G Y. Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of the Electrochemical Society ,1990,137(4):1023-1027. [16] Chowdari B V R,Rao G V S,Lee G Y H. XPS and ionic conductivity studies on Li 2 O-Al 2 O 3 (TiO 2 or GeO 2 )-P 2 O 5 glass-ceramics[J]. Solid State Ionics ,2000,136:1067-1075. [17] Leo C J,Chowdari B V R,Rao G V S,Souquet J L. Lithium conducting glass ceramic with NASICON structure[J]. Materials Research Bulletin ,2002,37(8):1419-1430. [18] Zheng Honghe(郑洪河),Qu Qunting(曲群婷),Liu Yunwei(刘云伟),Xu Zhongyu(徐仲榆). Research progress of inorganic solid electrolyte materials for lithium and lithium ion batteriesⅠ Lithium ceramic solid electrolytes[J]. Chinese Journal of Power Sources (电源技术),2007,131(5):349-353. [19] Zheng Honghe(郑洪河),Qu Qunting(曲群婷),Shi Jing(石静),Xu Zhongyu(徐仲榆). Research progress of inorganic solid electrolyte materials for lithium and lithium ion batteries Ⅱ Glassy-state lithium inorganic solid electrolytes[J]. Chinese Journal of Power Sources (电源技术),2007,31(12):1015-1020. [20] Zhu Yongming(朱永明),Ren Xuefeng(任雪峰),Li Ning(李宁). Progress of inorganic solid state lithium ion electrolyte[J]. Chemistry Online (化学通报),2010(12):1073-1079. [21] Kotobuki M,Hoshina K,Isshiki Y,Kanamura K. Preparation of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 solid electrolyte by sol-gel method[J]. Phosphorus Research Bulletin ,2011,25:61-63. [22] Duluard S,Paillassa A,Puech L,Vinatier P,Turq V,Rozier P,Lenormand P,Taberna P L,Simon P,Ansart F. Lithium conducting solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 obtained via solution chemistry[J]. Journal of the European Ceramic Society ,2013,33(6):1145-1153. [23] Kotobuki M,Koishi M,Kato Y. Preparation of Li 1. 5 Al 0. 5 Ti 1. 5 (PO 4 ) 3 solid electrolyte via a co-precipitation method[J]. Ionics ,2013,19(12):1945-1948. [24] Xu X X,Wen Z Y,Yang X L,Chen L D. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique[J]. Materials Research Bulletin ,2008,43(8-9):2334-2341. [25] Morimoto H,Awano H,Terashima J,Shindo Y,Nakanishi S,Ito N,Ishikawa K,Tobishima S. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li 1+ x Al x Ti 2- x (PO 4 ) 3 ( x =0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO 2 cathode for lithium cell[J]. Journal of Power Sources ,2013,240:636-643. [26] Xiao Zhuobing(肖卓炳),Chen Shang(陈上),Guo Manman(郭满满). Influence of Li 3 PO 4 addition on properties of lithium ion-conductive electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 [J]. Transactions of Nonferrous Metals Society of China ,2011,21(11):2454-2458. [27] Aono H,Sugimoto E,Sadaoka Y,Adachi G. The electrical properties of ceramic electrolytes for LiM x Ti 2- x (PO 4 ) 3+ y -Li 2 O,M=Ge,Sn,Hf,and Zr systems[J]. Journal of the Electrochemical Society ,1993,140:1827-1832. [28] Kotobuki M,Koishi M. Preparation of Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceramics International ,2013,39(4):4645-4649. [29] Zhang P,Matsui M,Hirano A,Takeda Y,Yamamoto O,Imanishi N. Water-stable lithium ion conducting solid electrolyte of the Li 1.4 Al 0.4 Ti 1.6- x Ge x (PO 4 ) 3 system( x =0~1.0)with NASICON-type structure[J]. Solid State Ionics ,2013,253:175-180. [30] Johnson P,Sammes N,Imanishi N,Takeda Y,Yamamoto O. Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor[J]. Solid State Ionics ,2011,192(1):326-329. [31] Kumar B,Thokchom J S. Space charge signature and its effects on ionic transport in heterogeneous solids[J]. Journal of the American Ceramic Society ,2007,90(10):3323-3325. [32] Xu X,Wen Z,Wu X,Yang X,Gu Z. Lithium ion-conducting glass-ceramics of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3- x Li 2 O( x =0~0.20)with good electrical and electrochemical properties[J]. Journal of the American Ceramic Society ,2007,90(9):2802-2806. [33] Fu J. Fast Li + ion conducting glass-ceramics in the system Li 2 O-Al 2 O 3 -GeO 2 -P 2 O 5 [J]. Solid State Ionics ,1997,104(3):191-194. [34] He K,Wang Y H,Zu C K,Zhao H F,Liu Y H,Chen J,Han B,Ma J R. Influence of Al 2 O 3 additions on crystallization mechanism and conductivity of Li 2 O-Ge 2 O-P 2 O 5 glass-ceramics[J]. Physica B ,2011,406(20):3947-3950. [35] Fu J. Effects of M 3+ ions on the conductivity of glasses and glass-ceramics in the system Li 2 O-M 2 O 3 -GeO 2 -P 2 O 5 (M= Al, Ca, Y, Dy, Gd, and La)[J]. Journal of the American Ceramic Society ,2000,83(4):1004-1006. [36] Katoh T,,Inda Y,Baba M,Ye R. Lithium-ion conductive glass-ceramics with composition ratio control and their electrochemical characteristics[J]. Journal of the Ceramic Society of Japan ,2010,118(1384):1159-1162. [37] Jadhav H S,Cho M S,Kalubarme R S,Lee J S,Jung K N,Shin K H,Park C J. Influence of B 2 O 3 addition on the ionic conductivity of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass ceramics[J]. Journal of Power Sources ,2013,241:502-508. [38] Cruz A M,Ferreira E B,Rodrigues A C M. Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO 4 glass-ceramic[J]. Journal of Non-Crystalline Solids ,2009,355(45-47):2295-2301. [39] Thokchom J S,Gupta N,Kumar B. Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic[J]. Journal of the Electrochemical Society ,2008,155(12):A915-A920. [40] Kasper H M. A new series of rare earth garnets Ln 3+ 3 M 2 Li + 3 O 12 (M=TE, W)[J]. Inorganic Chemistry ,1969,8(4):1000-1002. [41] Mazza D. Remarks on a ternary phase in the La 2 O 3 -Nb 2 O 5 -LI 2 O,La 2 O 3 -Ta 2 O 5 -Li 2 O system[J]. Materials Letters ,1988,7(5-6):205-207. [42] Hyooma H,Hayashi K. Crystal-structures of La 3 Li 5 Nb 2 O 12 ,La 3 Li 5 Ta 2 O 12 [J]. Materials Research Bulletin ,1988,23(10):1399-1407. [43] Cussen E J. The structure of lithium garnets:Cation disorder and clustering in a new family of fast Li + conductors[J]. Chemical Communications ,2006(4):412-413. [44] Thangadurai V,Kaack H,Weppner W J F. Novel fast lithium ion conduction in garnet-type Li 5 La 3 M 2 O 12 (M = Nb, Ta)[J]. Journal of the American Ceramic Society ,2003,86(3):437-440. [45] Thangadurai V,Weppner W J F. Li 6 ALa 2 Ta 2 O 12 (A=Sr, Ba):Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials ,2005,15(1):107-112. [46] Thangadurai V,Weppner W J F. Li 6 ALa 2 Nb 2 O 12 (A = Ca,Sr,Ba):A new class of fast lithium ion conductors with garnet-like structure[J]. Journal of the American Ceramic Society ,2005,88(2):411-418. [47] Murugan R,Thangadurai V,Weppner W J F. Fast lithium ion conduction in garnet-type Li 7 La 3 Zr 2 O 12 [J]. Angewandte Chemie : International Edition ,2007,46(41):7778-7781. [48] Thangadurai V,Weppner W J F. Effect of sintering on the ionic conductivity of garnet-related structure Li 5 La 3 Nb 2 O 12 and In- and K-doped Li 5 La 3 Nb 2 O 12 [J]. Journal of Solid State Chemistry ,2006,179(4):974-984. [49] Awaka J,Kijima N,Hayakawa H,Akimoto J. Synthesis and structure analysis of tetragonal Li 7 La 3 Zr 2 O 12 with the garnet-related type structure[J]. Journal of Solid State Chemistry ,2009,182(8):2046-2052. [50] Geiger C A,Alekseev E,Lazic B,Fisch M,Armbruster T,Langner R,Fechtelkord M,Kim N,Pettke T,Weppner W J F. Crystal chemistry and stability of "Li 7 La 3 Zr 2 O 12 " Garnet:A fast lithium-ion conductor[J]. Inorganic Chemistry ,2011,50(3):1089-1097. [51] Adams S,Rao R P. Ion transport and phase transition in Li 7- x La 3 (Zr 2- x M x )O 12 (M = Ta 5+ ,Nb 5+ , x =0,0.25)[J]. Journal of Materials Chemistry ,2012,22(4):1426-1434. [52] Murugan R,Ramakumar S,Janani N. High conductive yttrium doped Li 7 La 3 Zr 2 O 12 cubic lithium garnet[J]. Electrochemistry Communications ,2011,13(12):1373-1375. [53] Ohta S,Kobayashi T,Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li 7- x La 3 (Zr 2- x , Nb x )O 12 ( x =0~2)[J]. Journal of Power Sources ,2011,196(6):3342-3345. [54] Allen J L,Wolfenstine J,Rangasamy E,Sakamoto J. Effect of substitution(Ta,Al,Ga) on the conductivity of Li 7 La 3 Zr 2 O 12 [J]. Journal of Power Sources ,2012,206:315-319. [55] Li Y,Han J T,Wang C A,Xie H,Goodenough J B. Optimizing Li + conductivity in a garnet framework[J]. Journal of Materials Chemistry ,2012,22(30):15357-15361. [56] Dhivya L,Janani N,Palanivel B,Murugan R. Li + transport properties of W substituted Li 7 La 3 Zr 2 O 12 cubic lithium garnets[J]. Aip Advances ,2013,3(8):082115. [57] Deviannapoorani C,Dhivya L,Ramakumar S,Murugan R. Lithium ion transport properties of high conductive tellurium substituted Li 7 La 3 Zr 2 O 12 cubic lithium garnets[J]. Journal of Power Sources ,2013,240:18-25. [58] Wu Yuping(吴宇平),Yuan Xiangyun(袁祥云),Dong Chao(董超),Duan Jiyuan(段冀渊). Lithium Battery—Application and Practice(锂离子电池——应用与实践)[M]. Beijing:Chemical Industry Press(化学工业出版社),2011:249-250. [59] Kanno R,Maruyama M. Lithium ionic conductor thio -LISICON—The Li 2 S-GeS 2 -P 2 S 5 system[J]. Journal of the Electrochemical Society ,2001,148(7):A742-A746. [60] Hayashi A,Hama S,Minami T,Tatsumisago M. Formation of superionic crystals from mechanically milled Li 2 S-P 2 S 5 glasses[J]. Electrochemistry Communications ,2003,5(2):111-114. [61] Mizuno F,Hayashi A,Tadanaga K,Tatsumisago M. New,highly ion-conductive crystals precipitated from Li 2 S-P 2 S 5 glasses[J]. Advanced Materials ,2005,17(7):918-921. [62] Minami K,Mizuno F,Hayashi A,Tatsumisago M. Lithium ion conductivity of the Li 2 S-P 2 S 5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ion. ,2007,178(11-12):837-841. [63] Kamaya N,Homma K,Yamakawa Y,Hirayama M,Kanno R,Yonemura M,Kamiyama T,Kato Y,Hama S,Kawamoto K,Mitsui A. A lithium superionic conductor[J]. Nature Materials ,2011,10(9):682-686. [64] Kuhn A,Gerbig O,Zhu C,Falkenberg F,Maier J,Lotsch B V. A new ultrafast superionic Li-conductor:Ion dynamics in Li 11 Si 2 PS 12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics ,2014,16(28):14669-14674. [65] Liu Z,Fu W,Payzant E A,Yu X,Wu Z,Dudney N J,Kiggans J,Hong K,Rondinone A J,Liang C. Anomalous high ionic conductivity of nanoporous β-Li 3 PS 4 [J]. Journal of the American Chemical Society ,2013,135(3):975-978. [66] Hayashi A,Ohtomo T,Mizuno F,Tadanaga K,Tatsumisago M. Rechargeable lithium batteries,using sulfur-based cathode materials and Li 2 S-P 2 S 5 glass-ceramic electrolytes[J]. Electrochimica Acta ,2004,50(2-3):893-897. [67] Hayashi A,Hama S,Morimoto H,Tatsumisago M,Minami T. Preparation of Li 2 S-P 2 S 5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society ,2001,84(2):477-79. [68] Hayashi A,Hama S,Mizuno F,Tadanaga K,Minami T,Tatsumisago M. Characterization of Li 2 S-P 2 S 5 glass-ceramics as a solid electrolyte for lithium secondary batteries[J]. Solid State Ion. ,2004,175(1-4):683-686. [69] Sakuda A,Kitaura H,Hayashi A,Tadanaga K,Tatsumisago M. All-solid-state lithium secondary batteries with oxide-coated LiCoO 2 electrode and Li 2 S-P 2 S 5 electrolyte[J]. Journal of Power Sources ,2009,189(1):527-530. [70] Minami K,Hayashi A,Tatsumisago M. Mechanochemical synthesis of Li 2 S-P 2 S 5 glass electrolytes with lithium salts[J]. Solid State Ion. ,2010,181(33-34):1505-1509. [71] Minami K,Hayashi A,Tatsumisago M. Characterization of solid electrolytes prepared from Li 2 S-P 2 S 5 glass and ionic liquids[J]. Journal of the Electrochemical Society ,2010,157(12):A1296-A1301. [72] Ujiie S,Hayashi A,Tatsumisago M. Structure,ionic conductivity and electrochemical stability of Li 2 S-P 2 S 5 -LiI glass and glass-ceramic electrolytes[J]. Solid State Ion. ,2012,211:42-45. [73] Trevey J,Jang J S,Jung Y S,Stoldt C R,Lee S H. Glass-ceramic Li 2 S-P 2 S 5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications ,2009,11(9):1830-1833. [74] Tatsumisago M,Hama S,Hayashi A,Morimoto H,Minami T. New lithium ion conducting glass-ceramics prepared from mechanochemical Li 2 S-P 2 S 5 glasses[J]. Solid State Ion. ,2002,154-155:635-640. [75] Minami K,Hayashi A,Tatsumisago M. Crystallization process for superionic Li 7 P 3 S 11 glass-ceramic electrolytes[J]. Journal of the American Ceramic Society ,2011,94(6):1779-1783. [76] Muramatsu H,Hayashi A,Ohtomo T,Hama S,Tatsumisago M. Structural change of Li 2 S-P 2 S 5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ion. ,2011,182(1):116-119. [77] Ohtomo T,Mizuno F,Hayashi A,Tadanaga K,Tatsumisago M. Electrical and electrochemical properties of Li 2 S-P 2 S 5 -P 2 O 5 glass-ceramic electrolytes[J]. Journal of Power Sources ,2005,146(1-2):715-718. [78] Minami K,Hayashi A,Ujiie S,Tatsumisago M. Structure and properties of Li 2 S-P 2 S 5 -P 2 S 3 glass and glass-ceramic electrolytes[J]. Journal of Power Sources ,2009,189(1):651-654. [79] Kennedy J H,Zhang Z M. Preparation and electrochemical properties of the SiS 2 -P 2 S 5 -Li 2 S glass coformer system[J]. Journal of the Electrochemical Society ,1989,136(9):2441-2443. [80] Nagamedianova Z,Sánchez E. Electronic to ionic conductivity of glasses in the Li 2 S-Sb 2 S 3 -P 2 S 5 system[J]. Solid State Ion .,2006,177(37-38):3259-3265. [81] PRASADA RAO R,Seshasayee M. Oxysulfide glasses x Li 2 O-(1- x )(0.6 Li 2 S-0.4 P 2 S 5 )[J]. Journal of Power Sources ,2006,159(1):258-262. [82] Ohtomo T,Hayashi A,Tatsumisago M,Kawamoto K. Suppression of H 2 S gas generation from the 75Li 2 S·25P 2 S 5 glass electrolyte by additives[J]. J . Mater . Sci .,2013,48(11):4137-4142. [83] Ohtomo T,Hayashi A,Tatsumisago M,Kawamoto K. Characteristics of the Li 2 O-Li 2 S-P 2 S 5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids ,2013,364:57-61. [84] Ong S P,Mo Y,Richards W D,Miara L,Lee H S,Ceder G. Phase stability,electrochemical stability and ionic conductivity of the Li 10±1 MP 2 X 12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science ,2013,6(1):148-156. [85] Bron P,Johansson S,Zick K,auf der Guenne J S,Dehnen S,Roling B. Li 10 SnP 2 S 12 :An affordable lithium superionic conductor[J]. Journal of the American Chemical Society ,2013,135(42):15694-15697. [86] Kuhn A,Duppel V,Lotsch B V. Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8 -exploring the Li ion dynamics in LGPS Li electrolytes[J]. Energy & Environmental Science ,2013,6(12):3548-3552. |
[1] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[2] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[3] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[4] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[5] | 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252. |
[6] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[7] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[8] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[9] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[10] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[11] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[12] | 申晓宇, 乔荣涵, 岑官骏, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.2.1—2021.3.31)[J]. 储能科学与技术, 2021, 10(3): 958-973. |
[13] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术, 2021, 10(2): 393-407. |
[14] | 林乙龙, 肖敏, 韩东梅, 王拴紧, 孟跃中. 锂离子电池化成技术研究进展[J]. 储能科学与技术, 2021, 10(1): 50-58. |
[15] | 田孟羽, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.10.01—2020.11.30)[J]. 储能科学与技术, 2021, 10(1): 295-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||