[1] 肖力光, 冯铄. 相变材料在建筑节能及其它领域的研究与应用[J]. 吉林建筑大学学报, 2012, 29(2):35-41.
[2] 张寅平, 孔祥东, 等. 相变贮能一理论和应用[M]. 合肥:中国科技大学出版社, 1996.
[3] 周恩泽, 董华. 相变储热在建筑节能中的应用[J]. 哈尔滨商业大学学报(自然科学版), 2003, 19(1):100-103.
[4] 尚洪波, 徐玲玲, 沈艳华. 微胶囊相变材料在建筑节能领域的研究与应用[J]. 材料导报, 2005, 19(12):42-45.
[5] 张巨松, 金亮, 吴晓丹. 相变材料发展及在建筑节能工程中的应用[J]. 辽宁建筑, 2010(2):38-45.
[6] 张正国, 文磊, 方晓明, 等. 复合相变储热材料的研究与发展[J]. 化工进展, 2003(4):462-465.
[7] 王岐东, 董黎明, 代一心. 相变建筑节能材料的应用研究与进展[J]. 食品科学技术学报, 2005, 23(1):5-8.
[8] ZHANG G H, ZHAO C Y. Synthesis and characterization of a narrow size distribution nano phase change material emulsion for thermal energy storage[J]. Solar Energy, 2017, 147(3):406-413.
[9] SHI T, LI S, ZHANG H. Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in Trombe walls[J]. Journal of Wuhan University of Techology, 2017, 32(6):1306-1317.
[10] ZHOU Y, WANG S. Application effect of composite phase change energy storage thermal insulation mortar in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 20(33):190-196.
[11] INABA H, TU P. Evaluation of thermo-physical characteristics on shape-stabilized paraffin as a solid-liquid phase change material[J]. Heat and Mass Transfer, 1997, 32(4):307-312.
[12] KAMINOTO M, ALBE Y, SAWATA S, et al. Latent thermal storage unit using form-stable highdensity polyethylene[J]. Part I:Performance of the Storage Unit. Trans ASME, 1986, 108:doi:10.1115/1.3268107.
[13] XAVIER P, PEGIS Olives, SYLVAIN Mauran. Paraffin/porous-graphite-matrix composite as a constant power thermal storage material[J]. Heat and Mass Transfer, 2001, 44(14):2727-2737.
[14] LIU X, RAO Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material[J]. Thermochimica Acta, 2017, 647(10):15-21.
[15] WANG Y, LIANG D, LIU F. A polyethylene glycol/hydroxyapatite composite phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2017, 113(25):1475-1482.
[16] SHEN Q, OUYANG J, ZHANG Y. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage[J]. Applied Clay Science, 2017, 146(12):12-22.
[17] HUANG Y T, ZHANG H, WAN X. Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage[J]. Journal of Materials Chemistry A, 2017, 136(58):50-56.
[18] 王岐东, 董黎明, 代一心. 相变建筑节能材料的应用研究与进展[J]. 食品科学技术学报, 2005, 23(1):5-8.
[19] ISMAIL K A, HENRIQUEZ J R. PCM glazing system[J]. International Journal of Energy Research, 1997(21):1241-1255.
[20] ISMAIL K A, HENRIQUEZ J R. Thermally effective windows with moving pase change material curtains[J]. Applied Thermal Engineering, 2001(21):1909-1923.
[21] FRANCESCO Goia, MARCO Perino, MATTHIAS Haase. A numerical model to evaluate the thermal behaviour of PCM glazing system configurations[J]. Energy and Buildings, 2012(54):141-153.
[22] FRANCESCO Goia. Theremo-physical behaviour and energy performance assessment of PCM glazing system configurations:A numerical analysis[J]. Frontiers of Architectural Research, 2012(1):341-347.
[23] FRANCESCO Goia, MARCO Perino, VALENTINA Serra. Improving thermal comfort conditions by means of PCM glazing systems[J]. Energy and Buildings, 2013(60):442-452.
[24] 罗庆, 刘庆开, 夏煦, 等. 双层相变玻璃窗动态热调节过程研究[J]. 材料导报, 2010(24):69-72.
[25] 钟克承, 李舒宏, 周盈盈, 等. 相变玻璃窗与中空玻璃窗的动态传热特性[J]. 化工学报, 2014, 65(S2):114-122.
[26] IRSYAD M, PASEK D, INDARTONO Y S. Heat transfer characteristics of building walls using phase change material[J]. Iop Conference Series:Earth& Environmental Science, 2017, 60(1):12-18.
[27] 叶海, 程俊. 相变蓄热围护结构实验研究[J]. 住宅科技, 2017:47-51.
[28] 钱锋. 文远楼建筑节能实验室相变墙体应用效果分析[J]. 建筑科学, 2014, 30(8):60-67.
[29] 冯国会, 曹广宇, 于瑾, 等. 夏季昼夜温差较大地区相变墙蓄冷可行性分析[J]. 沈阳建筑大学学报(自然科学版), 2005, 21(4):350-353.
[30] 冯国会, 陈旭东, 梁若冰, 等. 基于空调蓄冷相变墙房间的热性能实验[J]. 沈阳建筑大学学报(自然科学版), 2006, 22(5):778-781.
[31] LV S, ZHU N, FENG G. Impact of phase change wall room on indoor thermal environment in winter[J]. Energy and Buildings, 2006, 38(1):18-24.
[32] KARAIPEKLI A, SARI A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(3):323-332.
[33] KARAIPEKLI A, SARI A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy, 2008, 33(12):2599-2605.
[34] TIAN G H, LV H L, HUANG J E. Experimental study on the thermal performance of a wall coated with a phase-change, energy-storing mortar layer during summer[J]. Applied Thermal Engineering, 2017, 124(9):279-285.
[35] 赵志强. 相变Trombe墙式太阳能建筑供暖性能研究[D]. 绵阳:西南科技大学, 2017.
[36] FARID M, KONG W J. Underfloor with laten heat storage[J]. Proc. Instn. Mech. Engrs., 2001, 215(A):601-609.
[37] 叶宏, 程丹鹏, 葛新石, 等. 定型相变储能式地板辐射采暖系统数值模拟的实验验证及参数分析[J]. 太阳能学报, 2004, 25(2):189-193.
[38] 张如意. 双层相变蓄能地板辐射供冷暖系统及其热性能研究[D]. 南京:东南大学, 2015.
[39] KOSNY J, BISWAS K, MILLER W, et al. Field thermal performance of naturally ventilated solar roof with PCM heat sink[J]. Solar Energy, 2012, 86:2504-2514.
[40] 谢尚群, 孔祥飞, 何金棋. 复合相变蓄能屋顶的制备及性能研究[J]. 建筑节能, 2017(7):47-52.
[41] PASUPATHY A, ATHANASIUS L, VELRAJ R, et al. Experimental investigationand numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management[J]. Applied Thermal Engineering 2008, 28:556-565.
[42] PASUPATHY A, VELRAJ R. Effect of double layer phase change material in building roof for year round thermal management[J]. Energy and Buildings, 2008, 40:193-203.
[43] 赵耀民. 相变建筑材料在建筑节能领域的应用研究[D]. 哈尔滨:哈尔滨工程大学, 2013.
[44] PEIPPO K, KAURANEN P, LUND P D. A multicomponent pcm wall optimized for passive solarheating[J]. Energy and Buildings, 1991, 17(4):259-270.
[45] HEIM D, CLARKE J A. Numerical modelling and thermal simulation of PCM-gypsum composite-s with ESP-r[J]. Energy and Buildings, 2004, 36(8):795-805.
[46] 班玉信, 王琦琳, 战乃岩. 相变材料特性对建筑围护结构传热的影响[J]. 节能, 2013, 366:42-45.
[47] CHEN X M, REN J, XIE Z W. Temperature and energy consumption simulation of phase change materials applied to building exterior wall[J]. Building Energy Efficiency, 2017, 36(50):60-66.
[48] 刘然. 相变储能混凝土调温节能效果数值模拟[D]. 深圳:深圳大学, 2016.
[49] 周红. 天津地区温室大棚相变蓄热墙体结构的优化[D]. 天津:天津城建大学, 2016.
[50] 魏茂丰, 陈宝明, 李玮, 等. 相变材料应用于墙体的数值传热研究[J]. 节能, 2016, 405:28-31.
[51] ATHIENITIS A K, LIU C, HAWES D. Investigation of thermal performance of a passive-solar test-room with wall latent-heat storage[J]. Build Environment, 1997, 32(5):405-410.
[52] STAMATIADOU M E, KATSOURINIS D I, FOUNTI M A. Computational assessment of a full-scale Mediterranean building incorporating wallboards with phase change materials[J]. Indoor& Built Environment, 2016, 106(32):102-108.
[53] 张博. 相变材料应用于夏季空调房间外围护结构的节能特性研究[D]. 南京:南京工业大学, 2013.
[54] BOGDAN M D, MIHAI C. Novel concept of composite phase change material wall system for year-round thermal energy savings[J]. Energy and Buildings, 2010, 42(10):1759-1772.
[55] 张洋洋. 多层相变墙体性能分析[J]. 节能, 2017, 421:54-59.
[56] 华旭明, 刁永发, 季亮. 相变围护结构传热性能研究及能耗分析[J]. 建筑热能通风空调, 2018, 37(3):5-9.
[57] 林坤平, 张寅平, 江忆. 我国不同气候地区夏季相变墙房间热性能模拟和评价[J]. 太阳能学报, 2003, 24(1):46-52.
[58] 贺礼荣. 相变墙体在建筑中的应用研究[J]. 四川建材, 2012(6):11-12.
[59] GASSAR A A, YUN G Y. Energy saving potential of PCMs in buildings under future climate conditions[J]. Applied Sciences, 2017, 7(12):doi:10.3390/app7121219.
[60] 郭凌云, 刘靖. 高温相变蓄热技术在建筑采暖中的应用[J]. 建筑节能, 2011, 245(39):9-11.
[61] 何叶从, 周杰, 王厚华, 等. 相变墙房间传热特性研究[J]. 太阳能学报, 2007, 28(10):1085-1090.
[62] 金丽丽. 相变墙体的实验研究与数值模拟[D]. 北京:北京建筑大学, 2013.
[63] ARKAR C, MEDVED S. Free cooling of a building using PCM heat storage integrated into the ventilation system[J]. Solar Energy, 2007, 81:1078-1087.
[64] NAGANO K, TAKEDA S, MOCHIDA T, et al. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermalstorage-Heat response in small scale experiments[J]. Energy and Buildings, 2006, 38:436-446. |