储能科学与技术 ›› 2019, Vol. 8 ›› Issue (1): 14-25.doi: 10.12028/j.issn.2095-4239.2018.0244
武怿达, 赵俊年, 詹元杰, 金周, 张华, 起文斌, 田丰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2018-12-15
出版日期:
2019-01-01
发布日期:
2019-01-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
武怿达(1992-),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:wuyida14@mails.ucas.ac.cn
基金资助:
WU Yida, ZHAO Junnian, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2018-12-15
Online:
2019-01-01
Published:
2019-01-01
摘要: 该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2018年10月1日至2018年11月30日上线的锂电池研究论文,共有4397篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料循环寿命的影响。金属锂负极的研究主要分析表面层覆盖对循环性能的影响,固态电解质、锂空电池、锂硫电池也有多篇,全固态电池的研究论文包括结构设计和界面改性。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析、电池模型的研究论文也有多篇。
中图分类号:
武怿达, 赵俊年, 詹元杰, 金周, 张华, 起文斌, 田丰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.10.1-2018.11.30)[J]. 储能科学与技术, 2019, 8(1): 14-25.
WU Yida, ZHAO Junnian, ZHAN Yuanjie, JIN Zhou, ZHANG Hua, QI Wenbin, TIAN Feng, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Oct. 1,2018 to Nov. 30,2018)[J]. Energy Storage Science and Technology, 2019, 8(1): 14-25.
[1] TSAI P C, WEN B, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4):860-871. [2] XU M, FEI L, ZHU S C, et al. Multifunctional NiTiO3 nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides[J]. Journal of Materials Chemistry A, 2018, 6(6):2643-2652. [3] KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy & Environmental Science, 2018, 11(5):1271-1279. [4] LEE T J, KIM H S, HWANG H S, et al. Solid permeable interface (SPI) on a high-voltage positive electrode of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(3):A575-A583. [5] KIM D W, UCHIDA S, SHⅡBA H, et al. New insight for surface chemistries in ultra-thin self-assembled monolayers modified high-voltage spinel cathodes[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-30135-2. [6] PATIL, N, AQIL M, AQIL A, et al. Integration of redox-active catechol pendants into poly(ionic liquid) for the design of high-performance lithium-ion battery cathodes[J]. Chemistry of Materials, 2018, 30(17):5831-5835. [7] PREEFER M B, OSCHMANN B, HAWKER C J, et al. High sulfur content material with stable cycling in lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2017, 56(47):15118-15122. [8] CHERKASHININ G, LEBEDEV M V, SHARATH S U, et al. Exploring redox activity in a LiCoPO4-LiCo2P3O10 tailored positive electrode for 5 V lithium ion batteries:Rigid band behavior of the electronic structure and stability of the delithiated phase[J]. Journal of Materials Chemistry A, 2018, 6(12):4966-4970. [9] ZHAO C, WADA T, ANDRADE DE V, et al. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390. [10] KUMAR S K, GHOSH S, MALLADI S K, et al. Nanostructured silicon-carbon 3D electrode architectures for high-performance lithium-ion batteries[J]. ACS Omega, 2018, 3(8):9598-9606. [11] WANG J, LIAO L, LI Y, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018:doi:10.1021/acs. nanolett.8603065. [12] RYU J, CHEN T, BOK T, et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05398-9. [13] SADEGHIPARI M, MOHAJERZADEH M A, HAJMIRZAHEYDARALI M, et al. A novel approach to realize Si-based porous wire-in-tube nanostructures for high-performance lithium-ion batteries[J]. Small, 2018, 14(22):doi:10.1002/smll.201800615. [14] CHANG W J, KIM S H, HWANG J, et al. Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-05986-9. [15] LI L, ZUO Z, SHANG H, et al. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode[J]. Nano Energy, 2018, 53:135-143. [16] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability[J]. Journal of Power Sources, 2018, 402:506-512. [17] KANG J, KIM H V, CHAE S A, et al. A new strategy for maximizing the storage capacity of lithium in carbon materials[J]. Small, 2018, 14(20):doi:10.1002/smll.201704394. [18] WANG T, SALVATIERRA R V, JALILOV A S, et al. Ultrafast charging high capacity asphalt-lithium metal batteries[J]. ACS Nano, 2017, 11(11):10761-10767. [19] ZOLLER F, PETERS K, ZEHETMAIER P M, et al. Making ultrafast high-capacity anodes for lithium-ion batteries via antimony doping of nanosized Tin oxide/graphene composites[J]. Advanced Functional Materials, 2018, 28(23):doi:10.1002/adfm.201706529. [20] LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li:A new way to construct high-performance lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1806470-e1806470. [21] MARASCHKY A, AKOLKAR R. Mechanism explaining the onset time of dendritic lithium electrodeposition via considerations of the Li+ transport within the solid electrolyte interphase[J]. Journal of the Electrochemical Society, 2018, 165(14):D696-D703. [22] SHI F, PEI A, BOYLE D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(34):8529-8534. [23] JOSHI P, IWAI K, PATNAIK S G, et al. Reduction of charge-transfer resistance via artificial SEI formation using electropolymerization of borylated thiophene monomer on graphite anodes[J]. Journal of the Electrochemical Society, 2018, 165(3):A493-A500. [24] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In-situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries[J]. Nano Letters, 2018:doi:10.1021/acs.nanolett.8603148. [25] GUO X, DING Y, XUE L, et al. A self-healing room-temperature liquid-metal anode for Alkali-ion batteries[J]. Advanced Functional Materials, 2018, 28(46):doi:10.1002/adfm.201804649. [26] KO Y, KWON M, SONG Y, et al. Thin-film electrode design for high volumetric electrochemical performance using metal sputtering-combined ligand exchange layer-by-layer assembly[J]. Advanced Functional Materials, 2018, 28(46):doi:10.1002/adfm.201804926. [27] YE H, ZHENG Z J, YAO H R, et al. Guiding uniform Li plating/stripping via lithium aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:10.1002/anie.201811955. [28] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):doi:1038/s41586-018-0397-3. [29] HUANG G, HAN J, ZHANG F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1805334-e1805334. [30] PUT B, VEREECKEN P M, STESMANS A. On the chemistry and electrochemistry of LiPON breakdown[J]. Journal of Materials Chemistry A, 2018, 6(11):4848-4859. [31] NGUYEN H H, HIRAHARA E, MORIKAWA K, et al. One-pot liquid phase synthesis of (100-x)Li3PS4x LiI solid electrolytes[J]. Journal of Power Sources, 2017, 365:7-11. [32] HOOD Z D, WANG H, PANDIAN A S, et al. Fabrication of sub-micrometer-thick solid electrolyte membranes of beta-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks[J]. Advanced Energy Materials, 2018, 8(21):doi:10.1002/aenm.201800014. [33] FAGLIONI F, MERINOV B V, GODDARD W A, Ⅲ, et al. Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance[J]. Physical Chemistry Chemical Physics, 2018, 20(41):26098-26104. [34] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018:doi:10.1021/jacs.8610282. [35] BUSCHMANN H, DOELLE J, S BERENDTS, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Physical Chemistry Chemical Physics, 2011, 13(43):19378-19392. [36] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10):2993-3002. [37] KAZYAK E, CHEN K H, DAVIS A L, et al. Atomic layer deposition and first principles modeling of glassy Li3BO3-Li2CO3 electrolytes for solid-state Li metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(40):19425-19437. [38] YU L, CHEN S, LEE H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate) borate additive for stable lithium metal batteries[J]. ACS Energy Letters, 2018, 3(9):2059-2067. [39] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9):2600-2608. [40] HUANG F, MA G, WEN Z, et al. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure[J]. Journal of Materials Chemistry A, 2018, 6(4):1612-1620. [41] ZHAO J, YU H, BEN L, et al. Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(35):16818-16823. [42] WANG Y, ZHANG X, XIONG P, et al. Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors:Sodium rivals lithium[J]. Journal of Materials Chemistry A, 2018, 6(43):21605-21617. [43] XIN X, ITO K, DUTTA A, et al. Dendrite-free epitaxial growth of lithium metal during charging in Li-O-2 batteries[J]. Angewandte Chemie-International Edition, 2018, 57(40):13206-13210. [44] SAHORE R, TORNHEIM A, PEEBLES C, et al. Methodology for understanding interactions between electrolyte additives and cathodes:A case of the tris(2,2,2-trifluoroethyl)phosphite additive[J]. Journal of Materials Chemistry A, 2018, 6(1):198-211. [45] NELSON K J, HARLOW J E, DAHN J R. A comparison of NMC/graphite pouch cells and commercially available LiCoO2/graphite pouch cells tested to high potential[J]. Journal of the Electrochemical Society, 2018, 165(3):A456-A462. [46] EHTESHAMI N, EGUIA-BARRIO A, MEATZA DE I, et al. Adiponitrile-based electrolytes for high voltage, graphite-based Li-ion battery[J]. Journal of Power Sources, 2018, 397:52-58. [47] ZHUANG Y, DU F, ZHU L, et al. Trimethylsilyl(trimethylsiloxy) acetate as a novel electrolyte additive for improvement of electrochemical performance of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode in lithium-ion batteries[J]. Electrochimica Acta, 2018, 290:220-227. [48] TORNHEIM A, PEEBLES C, GILBERT J A, et al. Evaluating electrolyte additives for lithium-ion cells:A new Figure of Merit approach[J]. Journal of Power Sources, 2017, 365:201-209. [49] TORNHEIM A, SAHORE R, HE M, et al. Preformed anodes for high-voltage lithium-ion battery performance:Fluorinated electrolytes, crosstalk, and the origins of impedance rise[J]. Journal of the Electrochemical Society, 2018, 165(14):A3360-A3368. [50] CHEREDDY S, CHINNAM P R, CHATARE V, et al. An alternative route to single ion conductivity using multi-ionic salts[J]. Materials Horizons, 2018, 5(3):461-473. [51] DONG N, YANG G, LUO H, et al. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries[J]. Journal of Power Sources, 2018, 400:449-456. [52] LIU Y, LIN D, LI Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-06077-5. [53] ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:10.1002/anie.201810132. [54] LI C, CHEN Y, CHEN Y, et al. Stability analysis for 5V high energy density pouch batteries of Si anode and SL/EMC electrolytes[J]. Journal of Alloys and Compounds, 2019, 773:105-111. [55] LIM J, PARK K, LEE H, et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte[J]. Journal of the American Chemical Society, 2018, 140(46):15661-15667. [56] RODRIGUES M T, KALAGA K, BABU G, et al. Coulombic inefficiency of graphite anode at high temperature[J]. Electrochimica Acta, 2018, 285:1-8. [57] GAO Y, WANG D, LI Y C, et al. Salt-based organic-inorganic nanocomposites:Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie-International Edition, 2018, 57(41):13608-13612. [58] SHIN H S, RYU W G, PARK M S, et al. Multilayered, bipolar, all-solid-state battery enabled by a perovskite-based biphasic solid electrolyte[J]. ChemSusChem, 2018, 11(18):3184-3190. [59] CHEN M, CORTIE D, HU Z, et al. A novel graphene oxide wrapped Na2Fe2(SO4)(3)/C cathode composite for long life and high energy density sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(27):doi:10.1002/aenm. 201800944. [60] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40℃[J]. Nano Letters, 2018:doi:10.1021/acs.nanolett.8b03902. [61] WANG C, ZHAO Y, SUN Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53:168-174. [62] LU Y, HUANG X, RUAN Y, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39):18853-18858. [63] XU R, HAN F, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53:958-966. [64] SUYAMA M, KATO A, SAKUDA A, et al. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures[J]. Electrochimica Acta, 2018, 286:158-162. [65] FU K, GONG Y, FU Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries[J]. Angewandte Chemie-International Edition, 2017, 56(47):14942-14947. [66] LI Q, PAN H, LI W, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Letters, 2018, 3(9):2259-2266. [67] DONG Q, YANG J, WU M, et al. Template-free synthesis of cobalt silicate nanoparticles decorated nanosheets for high performance lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15591-15597. [68] ULISSI U, ITO S, HOSSEINI S M, et al. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites[J]. Advanced Energy Materials, 2018, 8(26):doi:10.1002/aenm.201801462. [69] ZHANG T, MARINESCU M, WALUS S, et al. What limits the rate capability of Li-S batteries during discharge:Charge transfer or mass transfer?[J]. Journal of the Electrochemical Society, 2018, 165(1):A6001-A6004. [70] LI M, ZHANG Y, BAI Z, et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, 30(46):e1804271-e1804271. [71] SALVATIERRA R V, LOPEZ-SILVA G A, JALILOV A S, et al. Suppressing Li metal dendrites through a solid Li-ion backup layer[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1803869-e1803869. [72] LIANG J, LI X, ZHAO Y, et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2018:e1804684-e1804684. [73] GLAZIER S L, LI J, LOULI A J, et al. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements[J]. Journal of the Electrochemical Society, 2017, 164(14):A3545-A3555. [74] LIU Z, HU W, GAO F, et al. An ab initio study for probing iodization reactions on metallic anode surfaces of Li-I-2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(17):7807-7814. [75] CHEN C, OUDENHOVEN J F M, DANILOV D L, et al. Origin of degradation in Si-based all-solid-state Li-ion microbatteries[J]. Advanced Energy Materials, 2018, 8(30):doi:10.1002/aenm.201804130. [76] LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9:doi:10.1038/s4146-018-06877-9. [77] LIU T, LIN L, BI X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature nanotechnology, 2018:doi:10.1038/s41565-018-0284-y. [78] WOOD S M, FANG C, DUFEK E J, et al. Predicting calendar aging in lithium metal secondary batteries:The impacts of solid electrolyte interphase composition and stability[J]. Advanced Energy Materials, 2018, 8(26):doi:10.1002/aenm.201861427. [79] FIEDLER C, LUERSSEN B, ROHNKE M, et al. XPS and SIMS analysis of solid electrolyte interphases on lithium formed by ether-based electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(14):A3742-A3749. [80] WANG X, ZHANG M, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12):7606-7612. [81] STARKE B, SEIDLMAYER S, SCHULZ M, et al. Gas evolution and capacity fading in LiFexMn1-xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis[J]. Journal of the Electrochemical Society, 2017, 164(14):A3943-A3948. [82] BOULET-ROBLIN L, SHEPTYAKOV D, BOREL P, et al. Crystal structure evolution via operando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi0.5Mn1.5O4 vs. graphite[J]. Journal of Materials Chemistry A, 2017, 5(48):25574-25582. [83] BUCCI G, TALAMINI B, BALAKRISHNA A R, et al. Mechanical instability of electrode-electrolyte interfaces in solid-state batteries[J]. Physical Review Materials, 2018, 2(10):doi:10.1103/PhyRevMaterials. 2.105407. [84] KRANZ T, KRANZ S, MISS V, et al. Interrelation between redox molecule transport and Li+ ion transport across a model solid electrolyte interphase grown on a glassy carbon electrode[J]. Journal of the Electrochemical Society, 2017, 164(14):A3777-A3784. [85] DONG K, MARKOTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2018:doi:10.1002/cssc.201801969. [86] BARTSCH T, STRAUSS F, HATSUKADE T, et al. Gas evolution in all-solid-state battery cells[J]. ACS Energy Letters, 2018, 3(10):2539-2543. [87] GLAZIER S L, ODOM S A, KAUR A P, et al. Determining parasitic reaction enthalpies in lithium-ion cells using isothermal microcalorimetry[J]. Journal of the Electrochemical Society, 2018, 165(14):A3449-A3458. [88] HAO F, VERMA A, MUKHERJEE P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40):19664-19671. [89] INTAN N N, KLYUKIN K, ALEXANDROV V. Theoretical insights into oxidation states of transition metals at (001) and (111) LiNi0.5Mn1.5O4 spinel surfaces[J]. Journal of the Electrochemical Society, 2018, 165(5):A1099-A1103. [90] SHIN Y, KAN W H, AYKOL M, et al. Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-07080-6. [91] OHWAKI T, OZAKI T, OKUNO Y, et al. Li deposition and desolvation with electron transfer at a silicon/propylene-carbonate interface:Transition-state and free-energy profiles by large-scale first-principles molecular dynamics[J]. Physical Chemistry Chemical Physics, 2018, 20(17):11586-11591. [92] LI Y, N A ROMERO, K C LAU. Structure-property of lithium-sulfur nanoparticles via molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2018, 10(43):37575-37585. [93] ELLIS L D, ALLEN J P, THOMPSON L M, et al. Quantifying, understanding and evaluating the effects of gas consumption in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(14):A3518-A3528. [94] MAO Z, FARKHONDEH M, PRITZKER M, et al. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(14):A3469-A3483. [95] BIAN X, PANG Q, WEI Y, et al. Dual roles of Li3N as an electrode additive for Li-excess layered cathode materials:A Li-ion sacrificial salt and electrode-stabilizing agent[J]. Chemistry-A European Journal, 2018, 24(52):13815-13820. [96] WEI L, HOU Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(42):22156-22162. [97] BYEON P, BAE H B, CHUNG H S, et al. Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions[J]. Advanced Functional Materials, 2018, 28(45):doi:10.1002/adfm. 201804564. [98] PARK S, NENOV N S, RAMACHANDRAN A, et al. Development of highly energy densified ink for 3D printable batteries[J]. Energy Technology, 2018, 6(10):2058-2064. [99] KATO A, KOWADA H, DEGUCHI M, et al. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 322:1-4. [100] ZHAO C Z, CHEN P Y, ZHANG R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11):eaat3446-eaat3446. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||