储能科学与技术 ›› 2019, Vol. 8 ›› Issue (5): 975-996.doi: 10.12028/j.issn.2095-4239.2019.0082
• 储能标准与规范 • 上一篇
孙姝纬, 赵慧玲, 郁彩艳, 白莹
收稿日期:
2019-05-09
修回日期:
2019-06-01
出版日期:
2019-09-01
发布日期:
2019-06-11
通讯作者:
白莹,教授,研究方向为二次电池新材料及界面物理化学,E-mail:ybai@henu.edu.cn。
作者简介:
孙姝纬(1988-),女,博士研究生,主要研究方向为钠离子电池层状正极材料的表面改性和机理分析,E-mail:sswxm@126.com
基金资助:
SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying
Received:
2019-05-09
Revised:
2019-06-01
Online:
2019-09-01
Published:
2019-06-11
摘要: 拉曼光谱和傅里叶变换红外光谱是重要的物理表征方法,在电化学领域尤其是锂电池领域具有广泛的应用,常用于分析分子价键、官能团振动和转动能级跃迁状态、物相结构变化、稳定性、表面现象以及反应机理,相关谱学数据又可以计算化学键的键能、键长、键角等。本文介绍了拉曼和红外光谱的基本原理、测试方法、测试注意事项、常用测试设备及测试流程,并结合实际案例,具体分析了拉曼和红外光谱在锂电池电极材料、电解质、黏结剂等组分分析方面,及其在充放电循环中的生成产物对电化学稳定性的影响方面的应用研究。
中图分类号:
孙姝纬, 赵慧玲, 郁彩艳, 白莹. 锂电池研究中的拉曼/红外实验测量和分析方法[J]. 储能科学与技术, 2019, 8(5): 975-996.
SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 975-996.
[1] 张树霖. 拉曼光谱学与低维纳米半导体[M]. 北京:科学出版社, 2008. ZHANG S L. Raman spectroscopy and low-dimensional nanosemiconductors[M]. Beijing:Science Press, 2008. [2] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京:化学工业出版社, 2007. HUANG K L, WANG Z X, LIU S Q. Principle and key technology of lithium ion battery[M]. Beijing:Chemical Industry Press, 2007. [3] 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6):642-667. LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries(Ⅻ)-Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6):642-667. [4] 李琼瑶. FTIR和Raman光谱技术的进展[J]. 现代科学仪器, 2000, 3(1):40-42. LI Q Y. Advances in FTIR and Raman spectral techniques[J]. Modern Scientific Instruments, 2000, 3(1):40-42. [5] NOVAK P, PANITZ J C, JOHO F, et al. Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries[J]. J. Power Sources, 2000, 90(1):52-58. [6] JULIEN C M. Lithium intercalated compounds charge transfer and related properties[J]. Materials Science and Engineering R, 2003, 40(2):47-102. [7] DING Y L, XIE J, CAO G S, et al. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries[J]. Adv. Funct. Mater., 2011, 21(2):348-355. [8] DOEFF M M, HU Y Q, MCLARNON F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochem. Solid-State Lett., 2003, 6(10):A207-A209. [9] DUAN W C, HU Z, ZHANG K, et al. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries[J]. Nanoscale, 2013, 5(14):6485-6490. [10] OKUBO M, HOSONO E, KIM J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. J. Am. Chem. Soc., 2007, 129(23):7444-7452. [11] LIANG X, SERGUEI V S, VALERY V L, et al. Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries[J]. Adv. Funct. Mater., 2018, 28(7):doi:10.1002/adfm.201705836. [12] AMDOUNI N, ZAGHIB K, GENDRON F, et al. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry[J]. Ionics, 2006, 12(2):117-126. [13] WANG L P, LI H, HUANG X J, et al. A comparative study of Fd-3m and P4332 "LiNi0.5Mn1.5O4"[J]. Solid State Ionics, 2011, 193(1):32-38. [14] SONG B, LAI M O, LIU Z W, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries[J]. J. Mater. Chem. A, 2013, 1(34):9954-9965. [15] ZHAO J Q, HUANG R M, GAO W P, et al. An ion-exchange promoted phase transition in a Li-excess layered cathode material for highperformance lithium ion batteries[J]. Adv. Energy Mater., 2015, 5(9):doi:10.1002/aenm.201401937. [16] REDDY A, SRIVASTAVA A, GOWDA S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS Nano, 2010, 4(11):6337-6342. [17] MAO Y, DUAN H, XU B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy Environ. Sci., 2012, 5(7):7950-7955. [18] ZHANG Z L, WANG Y H, REN W F, et al. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries[J]. Angew. Chem. Int. Ed., 2014, 53(20):5165-5169. [19] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(4):181-191. [20] KAVAN L, KALBAC M, ZUKALOVA M, et al. Lithium storage in nanostructured TiO2 made by hydrothermal growth[J]. Chem. Mater., 2004, 16(3):477-485. [21] BRUTTI S, GENTILI V, MENARD H, et al. TiO2-(B) Nanotubes as anodes for lithium batteries:Origin and mitigation of irreversible capacity[J]. Adv. Energy Mater., 2012, 2(3):322-327. [22] LI F H, SONG J F, YANG H F, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology, 2009, 20(45):doi:10.1021/am201541s. [23] AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. The study of surface phenomena related to electrochemical lithium intercalation into Li xMOy host materials (M=Ni, Mn)[J]. J. Electrochem. Soc., 2000, 147(4):1322-1331. [24] WANG Z X, GAO W D, HUANG X J, et al. Spectroscopic studies on interactions and microstructures in propylene carbonate-LiTFSI electrolytes[J]. J. Raman Spectrosc., 2001, 32(11):900-905. [25] ZHUANG G R, XU K, YANG H, et al. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF 6/EC:EMC electrolyte[J]. J. Phys. Chem. B, 2005, 109(37):17567-17573. [26] LIU H J, TONG Y J, KUWATA N, et al. Adsorption of propylene carbonate (PC) on the LiCoO2 surface investigated by nonlinear vibrational spectroscopy[J]. J. Phys. Chem. C, 2009, 113(48):20531-20534. [27] YU L, LIU H J, WANG Y, et al. Preferential adsorption of solvents on the cathode surface of lithium ion batteries[J]. Angew. Chem. Int. Ed., 2013, 52(22):5753-5756. [28] MCCLOSKEY B D, BETHUNE D S, SHELBY R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. J. Phys. Chem. Lett., 2011, 2(10):1161-1166. [29] NORBERG N S, LUX S F, KOSTECKI R. Interfacial side-reactions at a LiNi0.5Mn1.5O4 electrode in organic carbonate-based electrolytes[J]. Electrochem. Commun., 2013, 34(1):29-32. [30] SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263):938-943. [31] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Lett., 2017, 2(6):1321-1326. [32] ZHUANG G V, YANG H, ROSS P N, et al. Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate[J]. Electrochem. Solid-State Lett., 2006, 9(2):A64-A68. [33] SANTNER H J, KOREPP C, WINTER M, et al. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries[J]. Anal. Bioanal. Chem., 2004, 379(2):266-271. [34] CORTE D, CAILLON G, JORDY C, et al. Spectroscopic insight into Li-ion batteries during operation:an alternative infrared approach[J]. Adv. Energy Mater., 2016, 6(2):doi:10.1002/aenm.201501768. [35] MAAZI S, NAVARCHIAN A H, KHOSRAVI M, et al. Effect of poly (vinylidene fluoride)/poly (vinyl acetate) blend composition as cathode binder on electrochemical performances of aqueous Li-ion battery[J]. Solid State Ionics, 2018, 320(1):84-91. [36] GAO S Y, SU Y F, BAO L Y, et al. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder[J]. J. Power Sources, 2015, 298(1):292-298. [37] HAREGEWOIN A M, TERBORG L, ZHANG L, et al. The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode[J]. J. Power Sources, 2018, 376(1):152-160. [38] MARKEVICH E, SALITRA G, AURBACH D. Influence of the PVDF binder on the stability of LiCoO2 electrodes[J]. Electrochem. Commun., 2005, 7(12):1298-1304. [39] VOGL U S, DAS P K, WEBER A Z, et al. Mechanism of interactions between CMC binder and Si single crystal facets[J]. Langmuir, 2014, 30(34):10299-10307. [40] KLAMOR S, SCHRODER M, BRUNKLAUS G, et al. On the interaction of water-soluble binders and nano silicon particles:Alternative binder towards increased cycling stability at elevated temperatures[J]. Phys. Chem. Chem. Phys., 2015, 17(8):5632-5641. [41] COURTEL F M, NIKETIC S, DUGUAY D, et al. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(4):2128-2134. [42] HUANG H J, HAN G S, XIE J Y, et al. The effect of commercialized binders on silicon oxide anode material for high capacity lithium ion batteries[J]. Int. J. Electrochem. Sci., 2016, 11(10):8697-8708. [43] YUE L, ZHANG L Z, ZHONG H X. Carboxymethyl chitosan:A new water soluble binder for Si anode of Li-ion batteries[J]. J. Power Sources, 2014, 247(1):327-331. [44] QIU L W, SHEN Y D, FAN H B, et al. Carboxymethyl fenugreek gum:Rheological characterization and as a novel binder for silicon anode of lithium-ion batteries[J]. Int. J. Biol. Macromol., 2018, 115(1):672-679. [45] LU L, LOU H M, XIAO Y L, et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Adv., 2018, 8(9):4604-4609. [46] MARKEVICH E, SHARABI R, BORGEL V, et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) amide ionic liquid during cathodic polarization of lithium and graphite electrodes[J]. Electrochim. Acta, 2010, 55(8):2687-2696. [47] JOHO F, NOVAK P. SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells[J]. Electrochim. Acta, 2000, 45(21):3589-3599. [48] MOSHKOVICH M, COJOCARU M, GOTTLIEB H E, et al. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS[J]. J. Electrochem. Chem., 2001, 497(2):84-96. [49] ZHU Z Q, CHENG F Y, CHEN J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites[J]. J. Mater. Chem. A, 2013, 1(33):9484-9490. [50] GROSS T, GIEBELER L, HESS C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Rev. Sci. Instrum., 2013, 84(7):doi:10.1063/1.4813263. [51] HOLZAPFEL M, BUQA H, HARDWICK L J, et al. Nano silicon for lithium-ion batteries[J]. Electrochim. Acta, 2006, 52(3):973-978. [52] PENG Z Q, FREUNBERGER S A, HARDWICK L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angew. Chem. Int. Ed., 2011, 50(28):6351-6355. [53] CHEN J J, YUAN R M, FENG J M, et al. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery[J]. Chem. Mater., 2015, 27(6):2048-2055. [54] XIANG H F, WANG H, CHEN C H, et al. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries[J]. J. Power Sources, 2009, 191(2):575-581. [55] BADDOUR-HADJEAN R, NAVONE C, PEREIRA-RAMOS J P. In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films[J]. Electrochim. Acta, 2009, 54(26):6674-6679. [56] CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nat. Commun., 2018, 9:doi:10.1038/s41467-018-05289-z. [57] MATSUO Y, KOSTECKI R, MCLARNON F. Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures[J]. J. Electrochem. Soc., 2001, 148(7):A687-A692. [58] GITTLESON F S, RYU W H, TAYLOR A D. Operando observation of the gold-electrolyte interface in Li-O2 batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(21):19017-19025. [59] ZHAO Z W, SU Y W, PENG Z Q. Probing lithium carbonate formation in trace o-assisted aprotic Li-CO2 batteries using in-situ surface enhanced Raman spectroscopy[J]. J. Phys. Chem. Lett., 2019, 10(3):322-328. [60] HY S, FELIX F, RICK J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3] O2 (0≤ x ≤ 0.5)[J]. J. Am. Chem. Soc., 2014, 136(3):999-1007. [61] ZENG Z C, HUANG S C, WU D Y, et al. Electrochemical tipenhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(37):11928-11931. [62] DHAND V, RAO V M, MITTAL G, et al. Synthesis of lithiumgraphite nanotubes-An in-situ CVD approach using organo-lithium as a precursor in the presence of copper[J]. Current Applied Physics, 2015, 15(3):265-273. [63] WANG X, XING W Y, FENG X M, et al. The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins[J]. Chem. Eng. J., 2014, 250(1):214-221. [64] WANG Z X, HUANG X J, CHEN L Q. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithiumion batteries[J]. J. Electrochem. Soc., 2004, 151(10):A1641-A1652. [65] OTOYAMA M, ITO Y, HAYASHI A, et al. Investigation of state-ofcharge distributions for LiCoO2 composite positive electrodes in allsolid-state lithium batteries by Raman imaging[J]. Chem. Lett., 2016, 45(7):810-812. [66] SAQIB N, SILVA C J, MAUPIN C M, et al. A novel optical diagnostic for in situ measurements of lithium polysulfides in battery electrolytes[J]. Appl. Spectrosc., 2017, 71(7):1593-1599. [67] ITOH T, SATO H, NISHINA T, et al. In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems[J]. J. Power Sources, 1997, 68(2):333-337. [68] JULIEN C M, MASSOT M. Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel[J]. Mater. Sci. Eng. B, 2003, 97(3):217-230. [69] BURBA C M, FRECH R. Raman and FTIR spectroscopic study of LixFePO4 (0≤ x ≤ 1)[J]. J. Electrochem. Soc., 2004, 151(7):A1032-A1038. [70] BADDOUR-HADJEAN R, PEREIRA-RAMOS J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chem. Rev., 2010, 110(3):1278-1319. [71] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53(3):1126-1130. [72] WANG Q, LI H, CHEN L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics, 2002, 152(SI):43-50. [73] IQBAL Z, VEPREK S. Raman-scattering from hydrogenated microcrystalline and amorphous silicon[J]. J. Phy. C, 1982, 15(2):377-392. [74] JULIEN C M, MASSOT M, ZAGHIB K. Structural studies of Li4/3Me5/3O4 (Me=Ti, Mn) electrode materials:Local structure and electrochemical aspects[J]. J. Power Sources, 2004, 136(1):72-79. [75] BADDOUR-HADJEAN R, BACH S, SMIRNOV M, et al. Raman investigation of the structural changes in anatase LixTiO2 upon electrochemical lithium insertion[J]. J. Raman Spectrosc., 2004, 35(7):577-585. [76] BADDOUR-HADJEAN R, PEREIRA-RAMOS J P, NAVONE C, et al. Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films[J]. Chem. Mater., 2008, 20(5):1916-1923. [77] RISTIC M, IVANDA M, POPOVIC S, et al., Dependence of nanocrystalline SnO2 particle size on synthesis route[J]. J. Non-Cryst. Solids, 2002, 303(2):270-280. [78] IKEZAWA Y, ARIGA T. In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface[J]. Electrochim. Acta, 2007, 52(7):2710-2715. [79] JOHO F, NOVÁK P. SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells[J]. Electrochim. Acta, 2000, 45(21):3589-3599. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[6] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[7] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[8] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[9] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[10] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[11] | 郑征, 王肖帅, 李斌, 黄涛, 李佩柯. 基于三绕组变压器的锂电池组自适应交错控制均衡方案[J]. 储能科学与技术, 2022, 11(4): 1131-1140. |
[12] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[13] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[14] | 陈博文, 崔瑞广, 沈炎宾, 陈立桅. 杨氏模量微观表征新方法在锂电池中的应用[J]. 储能科学与技术, 2022, 11(3): 991-999. |
[15] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||